Oncool.ru

Строй журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Удельный емкостный ток кабельной линии из сшитого полиэтилена

ЭЛЕКТРОлаборатория

Кабель с изоляцией из сшитого полиэтилена. Испытание повышенным напряжением

Приветствую Вас друзья.

Давненько не встречались. Надеюсь теперь наши встречи снова станут регулярными.

Сегодня хочу поговорить о испытаниях кабеля с пластиковой изоляцией. По крайней мере так его позиционируют производители, ссылаясь на ГОСТ Р 55025-2012 (МЭК 60502-2-2005) в сертификате соответствия.

Указанный мной ГОСТ имеет следующее название Кабели силовые с пластмассовой изоляцией на номинальное напряжение от 6 до 35 кВ включительно. Общие технические условия.

Настоящий стандарт распространяется на силовые кабели с пластмассовой изоляцией (далее — кабели), предназначенные для передачи и распределения электрической энергии в стационарных установках на номинальное переменное напряжение от 6 до 35 кВ включительно номинальной частотой 50 Гц.

Кабели согласно этого ГОСТа кроме прочего подразделяются по материалу изоляции токопроводящих жил:

— изоляция из поливинилхлоридного пластиката (В);

— изоляция из сшитого полиэтилена (Пв).

сшитый полиэтилен: Термореактивный материал, полученный посредством химической сшивки термопластичной композиции полиэтилена, удовлетворяющий требованиям 5.2.5.1, таблица 10, показатели 2 и 5. ГОСТ Р 55025-2012.

Появление кабелей с изоляцией из сшитого полиэтилена в нашей стране (в Россие) я связываю в основном со стремлением гнаться за всем «западным», как самым лучшим, не учитывая особенностей устройства нашей энергосистемы.

По мнению ряда ученых, например, Ивановского энергетического университета, кабели с изоляцией из сшитого полиэтилена разрабатывались для применения в системах с заземленной нейтралью (именно такие системы применяются за границей) у нас же сети 6 – 35 кВ в основном –сети с изолированной нейтралью. Отсюда и куча проблем возникающих при эксплуатации кабелей с изоляцией из сшитого полиэтилена. Но, впрочем, статья не совсем об этом.

Так же с появлением подобных кабелей возникли разногласия в подходе к проведению испытаний их изоляции повышенным напряжением.

Почему-то все решили, что лучший вариант испытания повышенным напряжением сверхнизкой частоты (СНЦ)(0,1Гц), и возник рынок установок СНЧ для испытания кабельных линий с изоляцией из сшитого полиэтилена.

Довожу до сведений тех кто не знает, что подобные установки стоят от 180 т.р. нашего производства до миллиона и больше – импортного.

А теперь вернемся к ГОСТ Р 55025-2012. Согласно п.10.6 этого ГОСТа

Кабели после прокладки и монтажа арматуры рекомендуется испытывать переменным напряжением 2U номинальной частотой 50 Гц в течение 60 мин или переменным напряжением U номинальной частотой 50 Гц в течение 24 ч, или переменным напряжением 3U номинальной частотой 0,1 Гц в течение 60 мин.

Допускается испытание кабелей с изоляцией из поливинилхлоридного пластиката постоянным напряжением 4U в течение 15 мин.

Наружная оболочка кабелей, проложенных в земле, должна быть испытана постоянным напряжением 10 кВ в течение 1 мин. Испытательное напряжение должно быть приложено между металлическим экраном или броней и заземлителем.

Хочу отметить что кабель с изоляцией из поливинилхлоридного пластиката это не кабель с изоляцией из сшитого полиэтилена.

U — Номинальное переменное напряжение между каждой из токопроводящих жил и землей, экраном или броней кабеля. Для 6кВ это примерно 3,5кВ; для 10кВ это 6кВ.

Как следует из ГОСТа совершенно ни к чему иметь установку СНЧ, т.к. время испытаний одно и тоже. Правда есть информация, что на большой длине кабеля в связи большой емкостью на переменном напряжении частотой 50Гц возникают проблемы – сильно увеличивается ток утечки.

Возможно по этой причине нигде не говорится о токе утечки для кабеля с изоляцией из сшитого полиэтилена.

Я честно говоря не пробовал, так как сталкивался в своей работе с кабелями не длиннее 30 м. На них все замечательно, да и ток утечки у меня в установке измеряется только при испытаниях выпрямленным напряжением.

На каком основании при испытаниях время уменьшают до 30 и даже 15 минут я не понимаю, хотя по тому же ГОСТу согласно п.5.2.2.7 кабели на строительной длине должны выдерживать в течение 5 минут воздействие переменного напряжения 3,5U частотой 50 Гц.

Если же кабель с изоляцией из сшитого полиэтилена испытывать выпрямленным напряжением, что я пробовал делать, то ток утечки мал (при напряжении 18кВ ток утечки 5-10мкА).

Кстати такое испытание допускает международный стандарт МЭК 60502.2, на основании которого разработан наш ГОСТ:

20.2.2 Испытание постоянным напряжением

Как альтернатива испытанию переменным напряжением, может производиться испытание постоянным четырехкратным напряжением 4 U в течение 15 мин.

ПРИМЕЧАНИЕ 1 Испытание постоянным напряжением может привести к пробою изоляции системы. Другие испытательные методы находятся на рассмотрении.

ПРИМЕЧАНИЕ 2 Для установок, которые уже находились в эксплуатации, могут использоваться более низкие напряжения и/или меньшие продолжительности испытаний. О величинах нужно договариваться, принимая во внимание время эксплуатации кабеля, тип окружающей среды, историю повреждений, а также цели, преследуемые при производстве испытаний.

Как видно в этом стандарте допускается испытание кабеля с изоляцией из сшитого полиэтилена выпрямленным напряжением и допускается изменение времени испытаний по согласованию сторон и исходя из состояния кабельной линии.

Последнюю редакцию стандарта МЭК 60502.2-2014 я не нашел. Возможно там есть какие-то изменения в плане испытаний.

Но пока действует ГОСТ Р 55025-2012 остальное не имеет значения.

Кроме того, никто не отменял ни ПУЭ, ни ПТЭЭП, ни РД 34.45-51.300-97.

В них четко сказано, что кабель с пластмассовой изоляцией испытывается повышенным выпрямленным напряжением

Кабель на 6 кВ испытывается напряжением 36 кВ ;

Кабель на 10 кВ испытывается напряжением 60кВ.

Время испытаний 10 или 5 минут.

Я конечно допускаю, что структура кабеля с изоляцией из сшитого полиэтилена отличается от кабеля с изоляцией из поливинилхлоридного пластиката, но видимо поэтому последний ГОСТом разрешается испытывать выпрямленным напряжением.

Скажу в заключении, что недавно провел испытание кабеля ВВГ-6кВ 3х70 в соответствии с ПУЭ и о чудо, кабель выдержал 36 кВ при токе утечки 80 – 100 мкА в течении 10 минут. Кабель вновь проложенный длинной от 50 до 70 м. Испытывалось 4 линии.

Так же отмечу, что и все кабели с изоляцией из сшитого полиэтилена которые я испытывал с 2012 года выдерживали испытания выпрямленным напряжением. Испытания проводились напряжением 3,5U в течении 15 минут кабели были как на 6кв так и на 10кВ, ток утечки составлял не более 15мкА. После проведения испытаний токоведущая жила соединялась с экраном с обоих сторон и заземлялась на сутки после чего кабель вводился в эксплуатацию. Правда длины кабелей были от 10 до 30 м. До сих пор все они успешно эксплуатируются.

Есть наверняка и негативные примеры. Но испытания проводятся для выявления некачественного оборудования. Возможно пробои возникают на кабелях, которые имели заводские дефекты либо муфты были сделаны некачественно с применением кустарного оборудования.

Следует задуматься и об этом.

Требования ГОСТ Р 55025-2012 в плане испытаний кабеля с изоляцией из шитого полиэтилена намного проще, чем кабель выдержал при заводских испытаниях и проще требований РД 34.45-51.300-97. По сути от кабеля требуется выдержать час его номинальное напряжение.

Остается лишь выбрать для себя каким напряжением испытывать:

Либо напряжением промышленной частоты,

Либо напряжением СНЧ.

Но это уж у кого какое есть оборудование.

Задумывайтесь друзья чаще и желаю Вам успехов.

Испытания силовых кабелей с изоляцией из сшитого полиэтилена

В России использовать кабель, изоляция которого изготавливается из сшитого полиэтилена, начали в конце 90х годов. На сегодняшний день данные кабели широко применяются в современном энергохозяйстве больших и малых городов, различных предприятий и прочих объектов. Причиной такого распространения являются несомненные преимущества, которыми обладают кабели данного типа:

  • учитывая отсутствие в изоляции масла и, соответственно, исключая его перетекание с участков, расположенных выше на нижние участки, возможна прокладка кабеля на территориях, где имеются перепады высот;
  • длительный срок эксплуатации. Значительно превышающий период использования кабеля, изоляция которого – бумажно-масляная;
  • высокая надёжность, уменьшение количества повреждений;
  • гибкость кабеля, упрощающая его прокладку в труднодоступных местах, на трассах повышенной сложности, а также обеспечивающая экономию средств и рабочего времени монтажной бригады;
  • широкий температурный диапазон прокладки – при изготовлении кабеля используются современные полимерные материалы, которые дают возможность осуществлять прокладку при температуре до -20°С, предварительно его не разогревая;
  • уменьшение диэлектрических потерь в сравнении с использованием кабелей, имеющих бумажно-масляную изоляцию.

Несмотря на весомые преимущества, следует также учитывать и то, что надёжность кабеля, независимо от его типа и изоляции зависит не только от имеющихся заводских характеристик, правильности осуществления прокладки и профессиональности выполнения монтажа, но и от уровня технического обслуживания, его своевременного проведения, диагностики при приёмке и в процессе эксплуатации.

Как известно, на данный момент отсутствует какая-либо нормативная база, регламентирующая такие виды работ как испытания силовых кабелей с изоляцией из сшитого полиэтилена или же диагностика кабеля из сшитого полиэтилена, а также многие другие. Поэтому для большинства организаций и предприятий, сталкивающихся с данными кабелями, вопрос технического обслуживания является довольно сложным и проблемным. Нормы испытаний кабелей с СПЭ-изоляцией берутся из источников различной степени информативности и зачастую устанавливаются заводами-изготовителями, руководствуясь опытом работы зарубежных коллег.

Такой вопрос, как испытание кабелей со спэ изоляцией является актуальным и рассматривается ведущими специалистами. Интерес к данному вопросу связан и с конструктивными особенностями кабеля, и с характеристиками материала, который используется для изготовления изоляции. Не меньше внимания уделяется и таким вопросам, как диагностика и периодичность испытаний кабельных линий с СПЭ-изоляцией. Опыт европейских коллег является очень ценным, даёт возможность структурировать информацию, касающуюся вопросов прокладки, диагностики и обслуживания кабельных линий.

1. Виды повреждений кабелей, имеющих СПЭ-изоляцию

Специалистами выделяются четыре типа повреждений кабеля со СПЭ-изоляцией, являющихся основными:

  • внешние повреждения изоляции, которые возникают в результате нарушения технологии прокладки. Такие повреждения составляют 70% общего количества регистрируемых повреждений кабеля;
  • внутренние повреждения изоляции, которые являются результатом несоблюдения правил эксплуатации (испытанием постоянным напряжением), а также вызываются естественным устареванием (появление триингов, водных деревьев);
  • различные повреждения имеющегося защитного экрана кабеля;
  • разнотипные повреждения кабельных жил.
Читать еще:  Как определить ток потребления светодиода

Испытание кабеля из сшитого полиэтилена напряжением постоянного тока оказалось неэффективным и непригодным, хотя с большим успехом оно применялось для тестирования кабелей, имеющих бумажно-пропитанную изоляцию. В случае испытания силовых кабелей с изоляцией из сшитого полиэтилена напряжением постоянного тока происходит образование объёмного заряда на микровключениях молекул воды, являющихся инородными. Разрядка данного заряда при традиционном снятии с кабеля остаточного заряда путём заземления не происходит, потому что снизу и сверху данного «конденсатора» находится сшитый полиэтилен (диэлектрик).

Дальнейшая подача рабочего напряжения приводит к суммированию напряжённостей электрополей и может вызвать локальное превышение предела прочности изоляции, что вызовет появление особых «электрических древовидных структур» (водные триинги). Изоляция повреждается (причём повреждения носят необратимый характер), наличие частичных разрядов, которые возникают в слабых местах изоляции, способствует дальнейшему развитию водяных деревьев. Но не только это приводит к развитию водяных деревьев, также способствуют из «разрастанию» действия электрополя, имеющейся воды, различные механические дефекты, время. Все перечисленные факторы вместе с возникшими водяными деревьями через определённое время приводят к пробою, который возникает именно в месте основного скопления данных водяных деревьев. К тому же, испытание спэ кабелей повышенным напряжением постоянного электротока не даёт никаких возможностей для выявления зарождающихся повреждений серьёзного характера.

Учитывая вышесказанное, испытание кабеля из сшитого полиэтилена необходимо проводить с использованием переменного напряжения. Постоянно изменяющаяся полярность заряда обеспечивает компенсацию накапливающихся зарядов, и происходит их разрядка. Эффективным является испытание СПЭ кабелей установкой СНЧ (напряжением сверхнизкой частоты), при котором удаётся достичь максимальной скорости развития пробоя и выявить имеющиеся дефекты в течение испытания. Форма выходного напряжения должна быть симметричной – это обстоятельство является особо важным.

Цикл имеет положительную и отрицательную половины, которые не являются идентичными, так как зависимость вида сигнала от величины нагрузки очень велика. Именно из-за этого возможно накопление постоянной составляющей, приводящее к созданию объемного заряда, способного в дальнейшем вызвать повреждение кабеля. Этого не произойдёт, если форма синусоиды испытательного напряжения является полностью симметричной.

В данной области несколько передовых научных разработчиков. В 1995г одной компанией вместе с ведущими научными германскими университетами были проведены особые исследования, результаты которых привели к разработке первой специальной системы, основным предназначением которой было проведение высоковольтных испытание СПЭ кабелей установкой СНЧ. Данная система имеет запатентованную цифровую технологию формирования выходного сигнала, именуемую (чистый синус), которая представляет собой наиболее современную технологию генерирования высокого напряжения СНЧ.

Основные особенности технологии:

  • выходной сигнал абсолютной симметричности, независимо от длины кабеля, уровня напряжения для испытания;
  • испытательное симметричное синусоидальное напряжение, которое обеспечивает направленность распространения имеющегося повреждения, что даёт возможность проведения испытания высоконадёжных кабелей и определять потенциальные пробои (90%) в течение получаса испытаний.

Результаты проведения данных исследований стали базой для разработки инструкции VDE DIN0276-620, по которой нормы испытаний кабелей с СПЭ-изоляцией определяют напряжение, равняющееся 3хUo (частота 0,1Гц, время воздействия — 30 мин).

Нормы испытаний кабелей со СПЭ- изоляцией согласно VDE DIN 0276-620

Напряжение кабельной линии, кВИспытательное напряжение на 0,1Гц
3хUo*, кВ
Длительность приложения испытательного напряжения 0,1Гц
61230 мин
1018
2035
3560

*Uo = фазное напряжение кабельной линии (Uo=(3*U) 1/2 )

В соответствии с нормами VDE DIN 0276-620 ведущими специалистами «Московских кабельных сетей», первой российской организации, внедрившей кабели с изоляцией СПЭ в собственном энергохозяйстве, наиболее опытной в работе с кабелем данного вида, была разработана собственная инструкция для испытаний кабельных линий, имеющая название УП-Б-1.

Нормы испытаний кабелей со СПЭ- изоляцией согласно УП-Б-1

Напряжение кабельной линии, кВИспытательное напряжение на 0,1Гц
3хUo*, кВ
Длительность приложения испытательного напряжения 0,1ГцДлительность приложения испытательного напряжения 0,1Гц
После ремонта
61230 мин20 минут
1018
2035
3560

Периодичность испытаний кабельных линий со СПЭ-изоляцией 10кВ, 20кВ и 35кВ, включая кабельные вставки:

  • перед включением кабельной линии в эксплуатацию;
  • после проведения ремонтов кабельных линий.

2. Испытание оболочки кабеля из сшитого полиэтилена

Вторым необходимым типом испытаний является испытание оболочки кабеля из сшитого полиэтилена.

Данный тип кабельных повреждений связан с коррозионными процессами, их пагубным влиянием, а также с воздействиями механического характера, происходящими во время выполнения монтажа, ремонтных работ и несогласованных раскопок кабельных линий. Если вовремя не произвести ремонт участка повреждённой оболочки кабеля, то основная изоляция утратит свои свойства и произойдёт пробой кабельной линии.

Испытание оболочки кабеля из сшитого полиэтилена выполняется с использованием повышенного напряжения постоянного электротока. При возникновении пробоя производится локальный поиск конкретного места повреждения.

Нормы испытаний оболочки кабелей со СПЭ-изоляцией согласно УП-Б-1

Напряжение кабельной линии, кВИспытательное напряжение постоянного тока, кВДлительность приложения испытательного напряжения
10-20510 мин

Нормы испытаний оболочки кабелей с СПЭ-изоляцией регламентируют периодичность их выполнения. Проведение испытаний пластиковых защитных оболочек кабелей 10кВ-20кВ, имеющих изоляцию из сшитого полиэтилена, выполняются:

  • перед осуществлением включения кабельных линий в эксплуатацию;
  • после проведения ремонтных работ основной изоляции кабельной линии;
  • при раскопках, которые проводятся в охранной зоне конкретной кабельной линии, в связи с возможным нарушением целостности кабельных оболочек;
  • периодически – после сдачи в эксплуатацию (через 2,5 года), потом 1 раз в течение 5 лет.

Для данных целей существует специально разработанное оборудование – особый аппаратный комплекс, реализующий полный цикл соответствующих работ по проведению испытаний кабелей и кабельных оболочек, предварительному определению мест имеющихся повреждений и точного определения мест нахождения дефектов оболочек с применением метода шагового напряжения (автоматический режим).

3. Поиск повреждения кабеля из сшитого полиэтилена

Поиск повреждения кабеля из сшитого полиэтилена предполагает проведение работ в трёх направлениях:

  • нахождение мест повреждений кабельной изоляции;
  • нахождение мест повреждений кабельной оболочки;
  • нахождение мест повреждений кабельных жил.

3.1. Нахождение мест повреждённой кабельной изоляции

Данное направление включает в себя два определённых этапа:

  • Определение предварительной локализации места имеющегося повреждения изоляции, которое выполняется с применением петлевого метода (длина кабеля должна быть больше 50 м). На данном этапе применяется прецизионный мост.
  • Обозначение точной локализации с применением метода шагового напряжения.

3.2. Нахождение мест повреждений кабельной оболочки

Для предварительной локализации мест имеющихся повреждений используется мостовой метод проведения измерения по Мюррею и Глейзеру. Использование приёмника универсального для точной локализации методом импульсного напряжения. Прецизионный мост может реализовать полный комплекс.

3.3. Нахождение мест повреждений в кабельных жилах

Применяются такие методы нахождения повреждений: прожиг (только для 3х жильного кабеля), предварительная локализация (применение беспрожиговых методов), точная локализация (акустический метод). Полный цикл испытаний и нахождения мест повреждений реализуется специальным оборудованием.

Кабели 6–10 кВ с изоляцией из сшитого полиэтилена. Требования к прокладке

В настоящее время в электрические сети среднего напряжения различного назначения всё шире внедряются силовые кабели с изоляцией из сшитого полиэтилена (XLPE, СПЭ). Применение в кабелях такой изоляции имеет определенные преимущества по сравнению с бумажно-пропитанной изоляцией. К этим преимуществам следует прежде всего отнести более высокие значения пропускной способности, сниженные себестоимость изделия и эксплуатационные затраты.

Немаловажным преимуществом является также и отсутствие жидких компонентов в конструкции кабелей, что не накладывает дополнительных требований по перепаду высот вдоль трассы их прокладки.

Надежная эксплуатация этих кабелей зависит в том числе и от условий их прокладки. Именно способы прокладки в большой мере определяют тепловой режим эксплуатации кабелей, а, следовательно, и надежность как самого кабеля, так и электропитания потребителей.

Вместе с тем проектирующими организациями уделяется недостаточное внимание условиям прокладки кабелей с изоляцией из СПЭ, что в ряде случаев приводит к перегреву и даже к возгоранию кабелей в нормальном эксплуатационном режиме. Этот вопрос на страницах нашего журнала рассматривают ученые из Новосибирска.

Кира Кадомская,

д.т.н., профессор

Юрий Лавров,

Семен Кандаков,

Новосибирский государственный технический университет

Наиболее распространенными в сетях 6–10 кВ в настоящее время являются кабели с СПЭ-изоляцией (более часто их называют кабелями с пластмассовой изоляцией (КПИ)) в однофазном исполнении (рис. 1).

Такое исполнение конструкции кабеля обусловлено требуемыми большими строительными длинами, легкостью монтажа, а также возможностью выполнения кабелей с большими номинальными сечениями жилы. Однофазная конструкция КПИ накладывает определенные ограничения на способы их прокладки в отличие от кабелей традиционных трехфазных конструкций с бумажно-пропитанной изоляцией. Например, в [1] оговариваются допустимые температурные условия эксплуатации кабеля при различных способах его прокладки, а в [2,3] подчеркиваются особенности прокладки КПИ в местах, требующих их механической защиты с помощью труб: при пересечении инженерных сооружений, естественных препятствий и т.п.

Невыполнение регламента прокладки КПИ в этих случаях может привести по крайней мере к двум негативным явлениям: к термическому разрушению кабеля при его эксплуатации в номинальном режиме либо локальному снижению электрической прочности СПЭ-изоляции на участке кабеля, заключенного в трубу.

Деградация CПЭ-изоляции при комбинированном воздействии электрического и теплового полей больше сказывается на снижении электрической прочности СПЭ при высокочастотных импульсных перенапряжениях, которые, например, могут инициировать вакуумные выключатели. Таким образом, неправильное проектирование прокладки КПИ однофазного исполнения на «особых участках» может с течением времени спровоцировать аварийную ситуацию, связанную с тепловым разрушением кабеля или его электрическим пробоем.

О тепловом режиме эксплуатации кабелей

Перегрев кабеля может быть вызван выделением тепла как внутри конструкции кабеля, так и в окружающем его пространстве. Источником теплового поля внутри и снаружи кабеля являются электрические токи, протекающие по всем металлическим элементам конструкции: по жиле кабеля и экрану из медных проволок.

Следует отметить, что в ряде проектов на определенных участках кабельной трассы (зачастую под дорогами) предполагается пофазная прокладка кабелей в металлических трубах. При такой прокладке дополнительным источником тепла являются токи Фуко, протекающие по металлической трубе. Так как длина защитных стальных труб обычно на порядок и более меньше общей длины кабельной линии, то при расчете токов в экранах можно с большой степенью точности пренебречь наличием стальной трубы. Проведенные расчеты подтвердили это предположение (рис. 2).

Читать еще:  Устройство сенсорного выключателя света

Конструкция кабеля с СПЭ-изоляцией однофазного исполнения

Направления токов в металлических элементах конструкции при пофазной прокладке кабеля в трубе

Токи в экранах кабелей в общем случае прокладки трех фаз кабеля

Рассмотрим общий случай прокладки трех фаз кабельной линии, экраны которых заземляются по концам его строительных участков (рис. 3). Расчеты производились как с помощью аналитической методики, основанной на анализе электромагнитного поля в соответствующих электрических схемах, так и на основе численного анализа поля с помощью векторного метода конечных элементов (ВМКЭ). При использовании численного метода использовалось понятие векторного магнитного потенциала, описывающего распределение магнитного поля в проводящей среде и в диэлектрике.

На рис. 4 приведены зависимости отношений токов в экранах к токам в жилах от расстояния между фазами кабеля при горизонтальной прокладке трех фаз в грунте. Рассмотрен кабель 10 кВ фирмы Nexans с изоляцией из сшитого полиэтилена типа N2XSY10 1•500. Токопроводящая жила и экран выполнены из меди. Сечение токопроводящей жилы 500 мм 2 , сечение экрана 35 мм 2 , номинальный ток при прокладке в земле 745 А, толщина изоляции по жиле – 4 мм, толщина ПВХ оболочки – 2,5 мм. Внешний диаметр кабеля – 45 мм. Заглубление центров фаз кабелей – 0,7 м.

Этот и аналогичные расчеты показали, что токи в экранах кабелей однофазного исполнения могут составлять значительную величину – начиная с 10–15% от тока в жиле при расположении фаз кабеля в непосредственной близости друг от друга и до 40–50% при значительном удалении фаз. Следовательно, при пофазной прокладке фаз в стальной трубе токи в экранах являются существенным дополнительным источником тепла.

Заземление экранов по концам строительного участка КЛ

Зависимость отношения токов в экранах к токам в жилах от расстояния между центрами фаз

Тепловыделение в стальной трубе

Произведенные расчеты показали, что при прокладке стальной трубы в грунте вихревые токи вследствие существенно большей проводимости трубы, выполненной из конструкционной стали (107См/м), замыкаются лишь по самой трубе. Тепловыделение в ней, определенное с помощью численного расчета теплового поля от вихревых токов при прокладке фазы кабеля с параметрами, указанными выше, и номинальном токе в нем составило 129 Вт/м.

Распределение температуры в плоскости сечения кабеля, проложенного в стальной трубе

При решении уравнения теплопроводности в рассматриваемой системе (однофазный кабель в трубе) были приняты следующие правомочные допущения:

— поверхность земли принята изотермической при заданной температуре,

— на границе расчетной области тепловой поток принят равным нолю,

-на границах сред с различными значениями коэффициента теплопроводности принималось условие непрерывности температурного поля (T1 = T2).

При проведении расчетов учитывались температурные зависимости теплофизической теплопроводности воздуха и электропроводности медной жилы и экрана. Распределение температуры в плоскости сечения конструкции приведено на рис. 5.

Распределение температуры в плоскости сечения фазы кабеля, проложенной в металлической трубе

Последствие прокладки фазы кабеля с пластмассовой изоляцией в стальной трубе

Температурное поле в сечении конструкции при прокладке трех фаз кабеля в стальной трубе

Из рисунка видно, что температура жилы в рассматриваемой конструкции составляет величину порядка 150 О С, что значительно выше длительно допустимой температуры нагрева изоляции из сшитого полиэтилена (90ºС).

Правомочность приведенных результатов подтверждается непосредственными измерениями температуры трубы при повреждении кабеля длиной 110 м, связывающего генераторы теплоэлектростанции с КРУ (длина стальных труб с проложенными под дорогой пофазно кабелями составляла 13 м). При этих измерениях температура стальной трубы оказалась равной 140–145 О С. На рис. 6 приведена фотография поврежденной фазы кабеля.

Избежать повреждения кабеля, проложенного пофазно в стальной трубе, можно, нагрузив его не более чем на 50–60% от номинального тока. Очевидно, что такая недогрузка кабелей вряд ли допустима.

Одной из возможных мер уменьшения рабочей температуры кабелей при прокладке их в стальных трубах является расположение всех трех фаз вплотную в вершинах правильного треугольника в общей стальной трубе.

Распределение температурного поля при прокладке трех фаз, расположенных в стальной трубе в вершинах правильного треугольника, приведено на рис. 7. Из рисунка видно, что при такой прокладке температура наиболее нагретой жилы составила 85 О C, что не превышает допустимого значения.

Можно заметить, что в наихудших условиях с точки зрения температуры находится верхняя фаза (фаза А на рис. 7), так как через неё проходит тепловой поток от нижних фаз.

1. Пофазная прокладка кабелей среднего напряжения в стальных трубах недопустима из-за появления дополнительного источника тепла в виде вихревых токов в стальной трубе, что приводит к повышению температуры в конструкции, существенно превышающей допустимую.

2. Снизить тепловыделение в стальной трубе можно путем прокладки трех фаз однофазных кабелей вплотную, в вершинах правильного треугольника в общей стальной трубе. Тепловыделение в трубе при этом становится соизмеримым с тепловыделением в жиле и экране кабеля, а максимальная рабочая температура не превышает предельно допустимых значений.

3. Если это не требуется по условиям механической прочности, то следует по возможности избегать прокладки кабелей в трубах из ферромагнитных материалов, а применять отрезки неметаллических труб (например, асбоцементные, керамические, пластмассовые или из иного немагнитного материала).

1. Кабели силовые с изоляцией из сшитого полиэтилена на напряжение 10, 20, 35 кВ. Технические условия. ТУ 16.К71-335-2004. (ОАО ВНИИКП).

2. Инструкция по прокладке кабелей силовых с изоляцией из сшитого полиэтилена на напряжение 10, 20 и 35 кВ. RUKAB/ID 23-2-019 (ABB Москабель).

3. Инструкция. Прокладка силовых кабелей на напряжение 10 кВ с изоляцией из сшитого полиэтилена. ИМ СК-20-03 (Камкабель).

Проверка сечения кабеля по термической стойкости

Цель работы

Научиться проверять выбранный кабель линии электропередач по термической стойкости.

Краткие теоретические сведения

Кабели и шины выбирают по номинальным параметрам (току и напряжению) и проверяют на термическую стойкость при коротком замыкании. Поскольку процесс короткого замыкания кратковременный, то можно считать, что все тепло, выделяемое в проводнике кабеля, идет на его нагрев.

При протекании тока короткого замыкания по кабелям, их токопроводящие жилы нагреваются, что в ряде случаев приводит к разрыву оболочек кабелей, разрушению концевых заделок, пожару в кабельных сооружениях и большим материальным потерям. Повышение температуры жил кабелей при коротком замыкании ведет к химическому разложению изоляции и резкому снижению ее электрической и механической прочности и, в итоге, — к аварии.

Максимально допустимые кратковременные превышения температуры при коротких замыканиях для силовых кабелей до 10 кВ принимаются с медными и алюминиевыми жилами: с бумажной пропитанной изоляцией 200 0 С, с поливинилхлоридной и резиновой изоляцией 150 0 С.

Задание

Проверить выбранный кабель линии электропередач по термической стойкости.

Проанализировать проделанную работу.

Необходимые данные для расчёта берутся из предыдущих практических работ №1, №2 и №3. Проверку на термическую стойкость осуществлять для кабельной линии в земле при коротком замыкании на шинах тяговой подстанции ТП1 в точке К1.

Порядок выполнения расчёта

Выбранное сечение проверяют на термическую стойкость от воздействия токов короткого замыкания (только кабельные линий проложенных в земле) по условию

(9)

где smin — минимальная площадь сечения по термической стойкости, мм 2 ;

sкл — площадь сечения выбранного кабеля, мм 2 .

Минимально площадь сечение по термической стойкости smin, мм 2 , определяется по формуле

(10)

где I — установившееся значение тока короткого замыкания, А;

tпр — приведённое время короткого замыкания от возникновения до отключения (суммарное время срабатывания защиты), принимаем 0,2 с;

С — термический коэффициент, соответствующий разности значений теплоты, выделенной в проводнике после и до короткого замыкания, для кабелей с медными жилами 141 Ас 2 /мм 2 , для кабелей с алюминиевыми жилами 85 Ас 2 /мм 2 .

Установившееся значение тока короткого замыкания, принимаем равное трёхфазному току короткого замыкания в Iкз (3) , А, и определяется по формуле

(11)

где Z — полное сопротивление линии, Ом.

Полное сопротивление линии определяется по формуле Z, Ом

(12)

Пример выполнения расчёта

Необходимые данные для расчёта берутся из предыдущих практических работ №1, №2 и №3.

Проверку на термическую стойкость осуществлять для кабельной линии в земле при коротком замыкании на шинах тяговой подстанции ТП1 в точке К1.

Для кабельной линии в земле выбран кабель АСБ 3х50, Iдоп = 140 А, R = 0,64 Ом/км, Х = 0,09 Ом/км.

Полное сопротивление линии

Трёхфазный ток короткого замыкания

Минимальная площадь сечения по термической стойкости

Выбранный кабель термически устойчив.

По результатам расчёта практической работы выбранный для кабельной линии в земле кабель АСБ 3х50, Iдоп = 140 А термически устойчив.

Контрольные вопросы

1.Что происходит с кабелем при коротких замыканиях?

2.Максимально допустимые кратковременные превышения температуры при коротких замыканиях для силовых кабелей 10 кВ.

3.Как осуществляется проверка кабеля на термическую стойкость?

Применение СПЭ-кабелей (с изоляцией из сшитого полиэтилена)

Практически любое эксплуатирующее электрические сети предприятие на напряжение 6, 10 кВ и выше, имеет дело с силовыми кабельными линиями. В целом КЛ имеют немало достоинств перед ВЛ: они имеют меньшие габариты, безопаснее, более надежны и удобны в эксплуатации. И это одни из основным причин, почему большая часть электрических сетей городов и крупных промышленных предприятий состоит из кабельных линий электропередач.
Большая часть кабелей проложенных в России и странах СНГ – имеют пропитанную бумажную изоляцию, и их конструкция, практически, остается неизменной в течение уже нескольких десятилетий. Эти кабели имеют множество недостатков: ограничения по разности уровней прокладки, частую повреждаемость, невысокая технологичность монтажа муфт, ограничения по передаваемой мощности.

Во времена отсутствия реальной альтернативы кабелям с бумажной изоляцией оставалось мириться с их слабыми местами и принимать дополнительные меры для обеспечения надежности электроснабжения потребителей и нагрузочных требований. Создавались резервирующие линии, прокладывали параллельные кабели, и, естественно, это приводило к существенному усложнению схемы электрической сети и росту капитальных вложений в сеть. С другой стороны, частая повреждаемость КЛ требовала наличия в штате квалифицированных специалистов по испытанию и отысканию мест повреждений в кабельных линиях, по ремонту кабельных линий, проведению земляных работ.

Читать еще:  Снизить ток в светодиодном драйвере

СПЭ-кабель

Эту ситуацию могло изменить только существенное изменение устройства кабелей, что и случилось с началом промышленного изготовления кабелей с изоляцией из сшитого полиэтилена (СПЭ). Кабели с СПЭ изоляцией не имеют многих недостатков характерных для кабелей с бумажной изоляцией, поэтому их применение позволяет решить многие назревшие проблемы по надежности электроснабжения, упрощения и оптимизации схемы сети, снижению расходов на реконструкцию и эксплуатацию кабельных линий.

Своими уникальными характеристиками СПЭ-кабели обязаны применяемому в них изоляционному материалу. На современных предприятиях производящих кабели процесс сшивки или вулканизации производится в среде нейтрального газа при высоком давлении и температуре. Такой способ вулканизации делает возможным получать достаточную степень сшивки по всей толщине изоляции и обеспечить отсутствие воздушных включений. Поперечные связи, образующиеся в процессе сшивки между молекулами полиэтилена, в основном и определяют характеристики нового материала. Кроме высоких диэлектрических свойств, это и больший, чем у других кабельных изоляционных материалов диапазон рабочих температур, и отличные механические свойства. Так, в нормальном режиме для сшитого полиэтилена допускается температура 90°С, в кратковременном режиме (протекание токов КЗ) 250°С, прокладка и монтаж КЛ могут проходить при температуре до –20°С. При этом монтаж кабелей допускается с радиусом изгиба до 7,5 наружных диаметров.

Однако основное преимущество СПЭ-кабелей перед бумажными – это их низкая повреждаемость. К сожалению, из-за недостаточного опыта эксплуатации, отсутствует достоверная информация о количестве повреждений таких кабелей в РФ. Согласно зарубежных данных, процент электрических пробоев СПЭ-кабелей на десятки и даже сотни раз ниже, чем на кабелях с бумажной изоляцией.

Сравнительные характеристики кабелей

Преимущественно кабели выпускаются в одножильном исполнении, а применение различных типов оболочек и возможность герметизации позволяет использовать кабель как для прокладки в земле, так и для кабельных сооружений, в том числе при групповой прокладке.
СПЭ-кабель может заменить кабель с бумажной изоляцией практически во всех случаях, однако на этапе внедрения кабелей с изоляцией из сшитого полиэтилена на том или ином предприятии необходимо выделить те области, где их применение имеет наибольший смысл. Для этого проведем короткое технико-экономическое сравнение «обычных» и СПЭ-кабелей. К сожалению из-за различий в затратах на ремонты и содержание кабельных линий для конкретных предприятий, разницу в общих затратах на эксплуатацию оценить затруднительно, поэтому предлагаем сравнивать только первоначальные вложения в кабель.
Для корректного сравнения возьмем кабели с одинаковой пропускной способностью – бумажный АСБ 3х240 10 кВ и три однофазных кабеля АПвП 1х185/25–10 кВ. Сравнительные характеристики кабелей приведены в табл. 1.

Кабель с бумажной изоляцией АСБ 3×240 — 10 кВ

Одножильный кабель с СПЭ изоляцией, ЗхАПвП 1×185/25-10 кВ

Вид кабельной линии в разрезе

Сечение жил, мм2

Ток нагрузки при прокладке в земле, А

в плоскости / треугольником 375/360

Максимально-допустимый 1-сек ток КЗ, А

Наружный диаметр, мм

Строительная длина, м

до 1400 (бар. N22)

Минимальный радиус изгиба, м

Допустимая разность уровней, м

Из приведенных данных видно, что при одинаковой пропускной способности и лучших остальных параметрах стоимость СПЭ-кабеля примерно на 60–70% выше. Это объясняется более дорогими материалами и технологией изготовления, большим расходом материалов при радиальной конструкции кабеля. Но с другой стороны, такая конструкция обеспечивает равномерное распределение электрического поля и, как следствие, увеличение электрической прочности.

Эта ситуация меняется кардинально при возрастании требований по пропускной способности кабельной линии. Так, параллельные кабели АСБ 1х240 10 кВ целесообразно заменить СПЭ кабелем большего сечения (см. табл. 2).

Кабели с бумажной
изоляцией
2 х АСБ 3×240

Одножильный кабель
с СПЭ изоляцией,
3хАПвП 1×500 35

Вид кабельной линии в разрезе

Сечение жил, мм2

Ток нагрузки при прокладке в земле, А

в плоскости / треугольником
650/610

Максимально-допустимый 1-сек ток КЗ, А

Наружный диаметр, мм

Строительная длина, м

Минимальный радиус изгиба, м

Допустимая разность уровней, м

Для СПЭ кабеля на напряжение 35 кВ картина еще более благоприятная (см. табл. 3).

Кабели с бумажной изоляцией
АОСБ Зх150-35 кВ

Одножильный кабель
С СПЭ изоляцией.
ЗхАПвП 1×150/25 — 35 кВ

Вид кабельной линии в разрезе

Сечение жил, мм2

Ток нагрузки при прокладке в земле, А

в плоскости / треугольником
350/330

Максимально-допустимый 1-сек ток КЗ, А

Строительная длина, м

до 1000 (бар. N22)

Минимальный радиус изгиба, м

Допустимая разность уровней, м

Это объясняется тем, что на этот класс напряжений применение конструкции с секторными жилами невозможно. Поэтому бумажные кабели изготавливаются с отдельно освинцованными жилами, что влечет за собой значительное удорожание по сравнению с кабелями 10 кВ. Стоимости кабелей с бумажной и полиэтиленовой изоляцией одинакового сечения приблизительно равны. Однако, как видно из табл. 3, полиэтиленовый кабель дает 40%-ное преимущество по нагрузочной способности.

Области применения СПЭ-кабеля

Исходя из приведенного выше сравнения можно определить области, где применение СПЭ-кабеля может быть наиболее целесообразно и даст наибольший эффект.
— исходя из стоимости, это уровни напряжений 15,20,35 кВ, где даже первоначальные капитальные затраты на кабель будут ниже.
— при необходимости передачи большой мощности. Классическим примером может послужить вывод мощности от генератора на шины РУ тепловой электростанции. Несколько таких проектов уже были реализованы на российских предприятиях. При этом в качестве альтернативы рассматривались сооружение медного шинопровода, прокладка 8–12 бумажных кабелей или нескольких кабелей с СПЭ изоляцией сечением 630 или 800 мм2. Как показывает практика, применение полиэтиленовых кабелей позволяет достичь экономии не только за счет кабельных линий, но и за счет уменьшения затрат на строительную часть. При обслуживании затраты на содержание полиэтиленового кабеля минимальны.

— СПЭ кабель поможет выйти из ситуации, когда кабель с бумажной изоляцией даже максимального сечения не проходит по пропускной способности. Так как пропускная способность полиэтиленового кабеля выше и максимальное сечение жилы может достигать 800 мм2. целесообразней использовать один кабель большого сечения. Это касается и случаев прокладки «спаренных» кабелей, когда взамен 2–х кабелей 240 мм2. целесообразней проложить 1 кабель сечением 500 мм2.

Еще одним случаем обязательного применения полиэтиленовых кабелей является наличие большой разности уровней по трассе прокладки. При использовании бумажно-масляных кабелей происходит осушение изоляции кабелей в высоких точках, что может повлечь за собой пробой. При этом даже небольшая разность уровней прокладки может стать причиной многочисленных повреждений на кабельных линиях. В качестве показательного примера можно привести ситуацию на одном из нефтехимических предприятий в Сибири, где находятся в эксплуатации большое количество бумажно-масляных кабелей 35 кВ. При заходе кабельных линий на подстанцию перепад уровней составляет 10–15 м. Несмотря на нестекающую изоляцию кабелей, каждая кабельная линия на подстанции повреждалась по несколько раз, в результате практически на каждой фазе были установлены соединительные муфты.

Для исключения случаев пробоя бумажных кабелей и обеспечения надежности электроснабжения руководством энергетического комплекса предприятия было принято решение о замене концевых участков кабельных линий на кабель с изоляцией из сшитого полиэтилена.

— использование кабелей с СПЭ изоляцией необходимо при особых требованиях к надежности электроснабжения, так как повреждаемость СПЭ-кабелей чрезвычайно мала.

— при наличии требований по нераспространению горения, рекомендуется применять кабели с оболочкой из поливинилхлорида пластиката пониженной горючести, который прошел соответствующие испытания и имеет сертификат на соответствие нормам пожарной безопасности.

Из практики эксплуатации СПЭ-кабеля

Опыт внедрения кабеля с изоляцией из сшитого полиэтилена в других странах показал их большие возможности и преимущества. Однако не обошлось без ошибок при постановке этих кабелей в производство. Так, изначально при изготовлении кабелей многие производители применяли более дешевую технологию «силановой сшивки» полиэтиленовой изоляции. Ее отличительной особенностью является то, что наложение изоляции происходило на обычной экструзионной линии, при этом в полиэтиленовый пластикат добавлялись специальные смеси для обеспечения сшивки при нормальной температуре. Для сравнения сейчас в основной массе сшивка кабелей производится в среде нейтрального газа при температуре 300–400 °С и давлении 8–9 атмосфер. Для обеспечения необходимых эксплуатационных качеств сшивка должна происходить равномерно по толщине изоляции. При применении силановой сшивки это требование обеспечить чрезвычайно трудно при толщине изоляции, которая применяется для кабелей на напряжении 10 киловольт. В результате неравномерной сшивки эксплуатационные качества, срок службы, степень подверженности изоляции воздействию водотриингов, электрическая прочность оказывались значительно хуже расчетных, что приводило к большому числу электрических пробоев. Поэтому на сегодняшний день подавляющее большинство производителей используют технологию сшивки в среде нейтрального газа.

Этот опыт был учтен и при постановке в производство данного кабеля в России, также как и другие требования, предъявляемые к кабелям среднего напряжения российскими заказчиками. В результате конструкция кабеля, производимого в России отличается от европейской. Так как кабель применяется в основном в сетях 10 кВ, толщина изоляции была увеличена с 3,4 до 4,0 мм. При прокладке в земле применяется оболочка из полиэтилена высокой плотности, обеспечивающая необходимую защиту кабеля от механических повреждений, как при прокладке, так и в процессе эксплуатации. Если необходима герметизация экрана, используются два слоя водонабухающих лент под и поверх медного экрана, накладываемых с перекрытием. При прокладке кабеля в кабельных сооружениях применяется оболочка из ПВХ пониженной горючести.

Их всего сказанного выше можно сделать выводы, что кабели с изоляцией из сшитого полиэтилена являются предпочтительными и имеют большие перспективы при строительстве и реконструкции кабельных линий на напряжение 6, 10, 35 кВ. Благодаря уникальным характеристикам, высокой электрической прочности изоляции, невысокой повреждаемости, длительному сроку службы СПЭ-кабелей, их применение становится не только технически обоснованным, но и экономически выгодным.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector