Oncool.ru

Строй журнал
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Допустимая потеря напряжения до розетки

Допустимые потери напряжения в линиях местных сетей

К местным сетям относятся сети номинальным напряжение 6 – 35 кВ. Местные сети по протяженности значительно превосходят протяженность сетей районного значения. Расход проводникового материала и изоляционных материалов значительно превосходят их потребность в сетях районного значения. Это обстоятельство требует ответственно подходить к проектированию сетей местного значения.

Передача электроэнергии от источников питания к электроприемникам сопровождается потерей напряжения в линиях и трансформаторах. Поэтому напряжение у потребителей не сохраняет постоянного значения.

Различают отклонения и колебания напряжения.

Отклонения напряжения обусловлены медленно протекающими процессами изменения нагрузок в отдельных элементах сети, изменением режимов напряжения на источниках питания. В результате таких изменений напряжения в отдельных точках сети меняется по величине, отклоняясь от номинального значения.

Колебания напряжения – это быстро протекающие (со скоростью не менее 1% в минуту) кратковременные изменения напряжения. Возникают при резких нарушениях нормального режима работы при резких включениях или отключениях мощных потребителей, коротких замыканиях.

Отклонения напряжения выражаются в процентах по отношению к номинальному напряжению сети

Колебания напряжения рассчитываются следующим образом:

где наибольшее и наименьшее значения напряжения в одной и той же точке сети.

Чтобы обеспечить нормальную работу электроприемников, на их шинах необходимо поддерживать напряжение, близкое к номинальному.

ГОСТ устанавливает следующие допустимые отклонения в нормальном режиме работы:

· на зажимах электродвигателей – от ;

· на зажимах осветительных приборов (внутреннее и наружное освещение) – от ;

· на зажимах остальных приемников от .

В послеаварийных режимах допускается дополнительное понижение напряжения на 5% к указанным величинам.

Чтобы обеспечить должный уровень напряжения на шинах электроприемников, применяют следующие меры:

· Применяют трансформаторы с коэффициентами трансформации, которые учитывают потерю напряжения как в обмотках трансформатора, так и в питающей сети. Например, (см. рис. 10.1), допустим, что напряжение на низкой стороне подстанции, приведенное к высокой стороне равно 105 кВ. При коэффициенте трансформации фактическое напря-жение на шинах низкого напряжения будет равно:

При коэффициенте трансформации фактическое напряжение на шинах низкого напряжения будет ближе к номинальному:

· Обмотки трансформаторов снабжаются ответвлениями, которые позволяют менять коэффициент трансформации в некоторых пределах. Напряжение, в узлах схемы, расположенных ближе к источнику питания обычно выше номинального, а в удаленных – ниже номинального. Чтобы на вторичной стороне трансформаторов, включенных в этих узлах, получить напряжение требуемого уровня, необходимо подобрать ответвления в обмотках трансформаторов. В узлах с повышенным уровнем напряжения устанавливаются коэффициенты трансформации выше номинального, а в узлах с пониженным уровнем напряжения коэффициенты трансформации трансформаторов устанавливаются ниже номинальных.

· Схему сети, номинальное напряжения, сечения проводов выбирают таким образом, чтобы потеря напряжения не превышала допустимого значения.

Допустимая потеря напряжения устанавливается с некоторой степенью точности, исходя из нормированных значений отклонений напряжения на шинах электроприемников:

· для сетей напряжением 220 – 380 В на всем протяжении от источника питания до последнего электроприемника от 5 – 6,5%;

· для питающей сети напряжением 6 – 35 кВ – от 6 до 8% в нормальном режиме; от 10 до 12 % в послеаварийном режиме;

· для сельских сетей напряжением 6 – 35 кВ –до 10 % в нормальном режиме.

Эти значения допустимой потери напряжения подобраны таким образом, чтобы при надлежащем регулировании напряжения в сети удовлетворялись требования ПУЭ в отношении отклонений напряжений на шинах электроприемников.

Влияние длины и сечения кабеля на потери по напряжению

Потери электроэнергии – неизбежная плата за ее транспортировку по проводам, вне зависимости от длины передающей линии. Существуют они и на воздушных линиях электропередач длиною в сотни километров и на отрезках электропроводки в несколько десятков метров домашней электрической сети. Происходят они, прежде всего потому, что любые провода имеют конечное сопротивление электрическому току. Закон Ома, с которым каждый из нас имел возможность познакомиться на школьных уроках физики, гласит, что напряжение (U) связано с током (I) и сопротивлением (R) следующим выражением:

из него следует что чем выше сопротивление проводника, тем больше на нем падение (потери) напряжения при постоянных значениях тока. Это напряжение приводит к нагреву проводников, который может грозить плавлением изоляции, коротким замыканием и возгоранием электропроводки.

При передаче электроэнергии на большие расстояния потерь удается избегать за счет снижения силы передаваемого тока, достигается это многократным повышением напряжения до сотен киловольт. В случае низковольтных сетей, напряжением 220 (380) В, потери можно минимизировать только выбором правильного сечения кабеля.

Почему падает напряжение и как это зависит от длины и сечения проводников

Для начала остановимся на простом житейском примере частного сектора в черте города или большого поселка, в центре которого находится трансформаторная подстанция. Жильцы домов, расположенных в непосредственной близости к ней жалуются на постоянную замену быстро перегорающих лампочек, что вполне закономерно, ведь напряжение в их сети достигает 250 В и выше. В то время как на окраине села при максимальных нагрузках на сеть оно может опускаться до 150 вольт. Вывод в таком случае напрашивается один, падение напряжение зависит от длины проводников, представленных линейными проводами.

Конкретизируем, от чего зависит величина сопротивления проводника на примере медных проводов, которым сегодня отдается предпочтение. Для этого опять вернемся к школьному курсу физики, из которого известно, что сопротивление проводника зависит от трех величин:

  • удельного сопротивления материала – ρ;
  • длины отрезка проводника – l;
  • площади поперечного сечения (при условии, что по всей длине оно одинаковое) – S.

Все четыре параметра связывает следующее соотношение:

очевидно, что сопротивление растет по мере увеличения длины проводника и падает по мере увеличения сечения жилы.

Для медных проводников удельное сопротивление составляет 0.0175 Ом·мм²/м, это значит, что километр медного провода сечением 1 мм² будет иметь сопротивление 17.5 Ом, в реальной ситуации оно может отличаться, например, из-за чистоты металла (наличия в сплаве примесей).

Для алюминиевых проводников величина сопротивления еще выше, поскольку удельное сопротивление алюминиевых проводов составляет 0.028 Ом·мм²/м.

Теперь вернемся к нашему примеру. Пусть от подстанции до самого крайнего дома расстояние составляет 1 км и электропитание напряжения 220 вольт до него проложено алюминиевым проводом марки А, с минимальным сечением 10 мм². Расстояние, которое необходимо пройти электрическому току складывается из длины нулевых и фазных проводов, то есть в нашем примере необходимо применить коэффициент 2, таким образом максимальная длина составит 2000 м. Подставляя наши значения в последнюю формулу, получим величину сопротивления равную 5.6 Ом.

Много это или мало, понятно из упомянутого выше закона Ома, так для потребителя с номинальным током всего 10 ампер, в приведенном примере падение напряжения составит 56 В, которые уйдут на обогрев улицы.

Конечно же, если нельзя уменьшить расстояние, следует выбрать сечение проводов большей площади, это касается и внутренних проводок, однако это ведет к увеличению затрат на кабельно-проводниковую продукцию. Оптимальным решением будет правильно рассчитать сечения проводов, учитывая максимальную допустимую нагрузку.

Смотрите также другие статьи :

К помещениям первой категории относятся сухие помещения с нормальными климатическими условиями, в которых отсутствуют любые из приведенных выше факторов. Такая характеристика может соответствовать, например складскому помещению.

На практике синусоидальные напряжения электрических сетей подвержены искажениям и вместо идеальной синусоиды на экране осциллографа мы видим искаженный, испещренный провалами, зазубринами и всплесками сигнал. Эти искажения следствие влияния гармоник – паразитных колебаний кратных основной частоте сигнала, вызванных включением в сеть нелинейных нагрузок.

Расчет местных сетей (сетей напряжением ) по потере

напряжения

Расчет местных сетей (сетей напряжением ) по потере

1. Допустимые потери напряжения в линиях местных сетей.

2. Допущения, положенные в основу расчета местных сетей.

Читать еще:  Где розетки у ситроен берлинго

3. Определение наибольшей потери напряжения.

4. Частные случаи расчета местных сетей.

5. Потеря напряжения в ЛЭП с равномерно распределенной нагрузкой.

Допустимые потери напряжения в линиях местных сетей

К местным сетям относятся сети номинальным напряжение 6 – 35 кВ. Местные сети по протяженности значительно превосходят протяженность сетей районного значения. Расход проводникового материала и изоляционных материалов значительно превосходят их потребность в сетях районного значения. Это обстоятельство требует ответственно подходить к проектированию сетей местного значения.

Передача электроэнергии от источников питания к электроприемникам сопровождается потерей напряжения в линиях и трансформаторах. Поэтому напряжение у потребителей не сохраняет постоянного значения.

Различают отклонения и колебания напряжения.

Отклонения напряжения обусловлены медленно протекающими процессами изменения нагрузок в отдельных элементах сети, изменением режимов напряжения на источниках питания. В результате таких изменений напряжения в отдельных точках сети меняется по величине, отклоняясь от номинального значения.

Колебания напряжения – это быстро протекающие (со скоростью не менее 1% в минуту) кратковременные изменения напряжения. Возникают при резких нарушениях нормального режима работы при резких включениях или отключениях мощных потребителей, коротких замыканиях.

Отклонения напряжения выражаются в процентах по отношению к номинальному напряжению сети

Колебания напряжения рассчитываются следующим образом:

где наибольшее и наименьшее значения напряжения в одной и той же точке сети.

Чтобы обеспечить нормальную работу электроприемников, на их шинах необходимо поддерживать напряжение, близкое к номинальному.

ГОСТ устанавливает следующие допустимые отклонения в нормальном режиме работы:

· на зажимах электродвигателей – от ;

· на зажимах осветительных приборов (внутреннее и наружное освещение) – от ;

· на зажимах остальных приемников от .

В послеаварийных режимах допускается дополнительное понижение напряжения на 5% к указанным величинам.

Чтобы обеспечить должный уровень напряжения на шинах электроприемников, применяют следующие меры:

· Применяют трансформаторы с коэффициентами трансформации, которые учитывают потерю напряжения как в обмотках трансформатора, так и в питающей сети. Например, (см. рис. 10.1), допустим, что напряжение на низкой стороне подстанции, приведенное к высокой стороне равно 105 кВ. При коэффициенте трансформации фактическое напря-жение на шинах низкого напряжения будет равно:

При коэффициенте трансформации фактическое напряжение на шинах низкого напряжения будет ближе к номинальному:

· Обмотки трансформаторов снабжаются ответвлениями, которые позволяют менять коэффициент трансформации в некоторых пределах. Напряжение, в узлах схемы, расположенных ближе к источнику питания обычно выше номинального, а в удаленных – ниже номинального. Чтобы на вторичной стороне трансформаторов, включенных в этих узлах, получить напряжение требуемого уровня, необходимо подобрать ответвления в обмотках трансформаторов. В узлах с повышенным уровнем напряжения устанавливаются коэффициенты трансформации выше номинального, а в узлах с пониженным уровнем напряжения коэффициенты трансформации трансформаторов устанавливаются ниже номинальных.

· Схему сети, номинальное напряжения, сечения проводов выбирают таким образом, чтобы потеря напряжения не превышала допустимого значения.

Допустимая потеря напряжения устанавливается с некоторой степенью точности, исходя из нормированных значений отклонений напряжения на шинах электроприемников:

· для сетей напряжением 220 – 380 В на всем протяжении от источника питания до последнего электроприемника от 5 – 6,5%;

· для питающей сети напряжением 6 – 35 кВ – от 6 до 8% в нормальном режиме; от 10 до 12 % в послеаварийном режиме;

· для сельских сетей напряжением 6 – 35 кВ –до 10 % в нормальном режиме.

Эти значения допустимой потери напряжения подобраны таким образом, чтобы при надлежащем регулировании напряжения в сети удовлетворялись требования ПУЭ в отношении отклонений напряжений на шинах электроприемников.

Допущения, положенные в основу расчета местных сетей

При расчете сетей напряжением до 35 кВ включительно принимаются следующие допущения:

· не учитывается зарядная мощность ЛЭП;

· не учитывается индуктивное сопротивление кабельных ЛЭП;

· не учитываются потери мощности в стали трансформаторов. Потери мощности в стали трансформаторов учитываются лишь при подсчете потерь активной мощности и электроэнергии во всей сети;

· при расчете потоков мощности не учитываются потери мощности, т. е. мощность в начале участка равна мощности в конце участка;

· не учитывается поперечная составляющая падения напряжения. Это значит, что не учитывается сдвиг напряжения по фазе между узлами схемы;

· расчет потерь напряжения ведется по номинальному напряжению, а не по реальному напряжению в узлах сети.

Определение наибольшей потери напряжения

С учетом допущений, принятых при расчете местных сетей, напряжение в любом i-м узле сети рассчитывается по упрощенной формуле:

где соответственно активная и реактивная мощности, протекающие по участку j;

соответственно активное и индуктивное сопротивления участка j.

Неучет потери мощности в местных сетях позволяет рассчитывать потери напряжения либо по мощностям участков, либо по мощностям нагрузок.

Если расчет ведется по мощностям участков, то учитываются активное и реактивное сопротивления этих же участков. Если расчет ведется по мощности нагрузок, то необходимо учитывать суммарные активные и реактивные сопротивления от ИП до узла подключения нагрузки. Применительно к рис. 10.2 имеем:

· по мощностям участков

· по мощностям нагрузок

.

В неразветвленной сети наибольшая потеря напряжения – это потеря напряжения от ИП до конечной точки сети.

В разветвленной сети наибольшая потеря напряжения определяется следующим образом:

· рассчитывается потеря напряжения от ИП до каждой конечной точки;

· среди этих потерь выбирается наибольшая. Ее величина не должна превышать допустимую потерю напряжения для данной сети.

Частные случаи расчета местных сетей

На практике встречаются следующие частные случаи расчета местных сетей (формулы приведены для расчета по мощностям участков):

· ЛЭП по всей длине выполнена проводами одного сечения одинаково рас-положенными

· ЛЭП по всей длине выполнена проводами одного сечения одинаково рас-положенными. Нагрузки имеют одинаковый cosφ

· ЛЭП, питающие чисто активные нагрузки (Q = 0, cosφ =1), или кабельные ЛЭП напряжением до 10 кВ (Х =0)

Потеря напряжения в ЛЭП с равномерно распределенной нагрузкой

В большинстве практических случаев приходится иметь дело с чисто активной равномерно распределенной нагрузкой. Для сети, приведенной на рис. 10.3, имеем:

Потеря напряжения, которая создается током i на длине участка l

.

Потеря напряжения на всей длине L

=

При суммарной нагрузке ЛЭП , ток Тогда,

Из полученной формулы видно, что равномерно распределенную нагрузку можно заменить суммарной сосредоточенной нагрузкой, приложенной в середине ЛЭП.

Если расчет ведется в мощностях, то . Тогда величина потери напряжения равна

Полученным правилом замены равномерно распределенной нагрузки суммарной можно пользоваться в более сложных случаях. Например, когда равномерно распределенная нагрузка имеется только на одном из участков (рис. 10.4):

.

Расчет падения напряжения в кабеле

Провода и кабели предназначены для передачи электроэнергии потребителям. При этом в протяженном проводнике падает напряжение пропорционально его сопротивлению и величине проходящего тока. В итоге к потребителю напряжение подается несколько меньше, чем оно было у источника (в начале линии). По всей длине провода потенциал будет изменяться из-за потерь в нем.

Потери напряжения в домашнем освещении

Выбор сечения кабеля производится с целью обеспечения его работоспособности при заданном максимальном токе. При этом следует учитывать его длину, от которой зависит еще один важный параметр – падение напряжения.

Линии электропередач выбирают по нормированному значению экономической плотности тока и рассчитывают на падение напряжения. Его отклонение от исходного не должно превышать заданных значений.

Величина проходящего через проводник тока зависит от подключаемой нагрузки. При ее увеличении возрастают также потери на нагрев.

На рисунке выше изображена схема подачи напряжения на освещение, где на каждом ее участке обозначены потери напряжения. Наиболее важной является самая удаленная нагрузка, и потери напряжения большей частью производятся для нее.

Потеря напряжения

Расчет потери напряжения ∆U на участке цепи длиной L делают по формуле:

  • P и Q – мощности, Вт и вар (активная и реактивная);
  • r и x – активное и реактивное сопротивления линии, Ом/м;
  • Uном – номинальное напряжение, В.
  • Uном указывается в характеристиках электроприборов.
Читать еще:  Колодка это вилка или розетка

Согласно ПУЭ, допустимые отклонения напряжения от нормы следующие:

  • силовые цепи – не выше ±5 %;
  • схемы освещения жилых помещений и снаружи зданий – до ±5 %;
  • освещение предприятий и общественных зданий – от +5 % до -2,5 %.

Общие потери напряжения от трансформаторных подстанций до самой удаленной нагрузки в общественных и жилых зданиях не должны превышать 9%. Из них 5% относится к участку до главного ввода и 4% от ввода до потребителя. В соответствии с ГОСТ 29322-2014 номинал напряжения в трехфазных сетях – 400 В. При этом допускается отклонение от него на ±10% при нормальных условиях эксплуатации.

Нужно обеспечить равномерную нагрузку в трехфазных линиях на 0,4 кВ. Здесь важно, чтобы каждая фаза была нагружена равномерно. Для этого электродвигатели подключаются к линейным проводам, а освещение – между фазами и нейтралью, уравнивая таким образом нагрузки по фазам.

В качестве исходных данных используют значения токов или мощностей. Для протяженных линий учитывается индуктивное сопротивление, когда рассчитывают ∆U в линии.

Сопротивление x проводов принимают в диапазоне от 0,32 до 0,44 Ом/км.

Расчет потерь в проводниках производят по ранее приведенной формуле, где удобно разделить правую часть на активную и реактивную составляющие:

Подключение нагрузки

Нагрузка подключается разными способами. Наиболее распространены следующие:

  • подключение нагрузки в конце линии (рис. а ниже);
  • равномерное распределение нагрузок по длине линии (рис. б);
  • линия L1, к которой подключена другая линия L2 с равномерно распределенными нагрузками (рис. в).

Схема, на которой показаны способы подключения нагрузок от электрощита

Расчет ЛЭП на потерю напряжения

  1. Выбор средней величины реактивного сопротивления для жил из алюминия или сталеалюминия, например, в 0,35 Ом/км.
  2. Расчет нагрузок P, Q.
  3. Расчет реактивной потери:

Определение допустимой активной потери из разности между потерей напряжения, которая задана, и вычисленной реактивной:

Сечение провода находится из отношения:

Выбор ближайшего значения сечения из стандартного ряда и определение по таблице активного и реактивного сопротивлений на 1 км линии.

На рисунке изображен ряд сечений жил кабеля разных размеров.

Кабельные жилы разных сечений

По полученным значениям рассчитывается уточненная величина падения напряжения по формуле, приведенной ранее. Если оно превысит допустимую, следует взять провод больше из того же ряда и произвести новый расчет.

Пример 1. Расчет кабеля при активных нагрузках.

Для расчета кабеля, прежде всего, следует определить суммарную нагрузку всех потребителей. За исходную можно принять P = 3,8 кВт. Сила тока находится по известной формуле:

Если все нагрузки активные, cosφ=1.

Подставив в формулу значения, можно найти ток, который будет равен: I = 3,8∙1000/220 = 17,3 А.

По таблицам находится сечение в кабеле, для медных проводников составляющее 1,5 мм 2 .

Теперь можно найти сопротивление кабеля длиной 20 м: R=2∙r∙L/s=2∙0,0175 (Ом∙мм 2 )∙20 (м)/1,5 (мм 2 )=0,464 Ом.

В формуле расчета сопротивления для двухжильного кабеля учитывается длина обеих жил.

Определив величину сопротивления кабеля, можно легко найти потери напряжения: ∆U=I∙R/U∙100 % =17,3 А∙0,464 Ом/220 В∙100 %=3,65 %.

Если на вводе номинальное напряжение составляет 220 В, то допустимые отклонения до нагрузки составляют 5%, а полученный результат не превышает ее. Если бы было превышение допуска, пришлось бы взять больший провод из стандартного ряда, с сечением, составляющим 2,5 мм 2 .

Пример 2. Расчет падения напряжения при подаче питания на электродвигатель.

Электродвигатель потребляет ток при следующих параметрах:

  • Iном = 100 А;
  • cos φ = 0,8 в нормальном режиме;
  • Iпусковой = 500 А;
  • cos φ = 0,35 при пуске;
  • падение напряжения на электрощите, распределяющем ток 1000 А, составляет 10 В.

На рис. а ниже изображена схема питания электродвигателя.

Схемы питания электродвигателя (а) и освещения (б)

Чтобы избежать вычислений, применяют достаточно точные для практического применения таблицы с уже рассчитанным ∆U между фаз в кабеле длиной 1 км при величине тока 1 А. В приведенной ниже таблице учитываются величины сечения жил, материалы проводников, тип цепи.

Таблица для определения потерь напряжения в кабеле

Сечение в мм 2Однофазная цепьСбалансированная трехфазная цепь
Питание двигателяОсвещениеПитание двигателяОсвещение
Обычный раб. режимЗапускОбычный раб. режимЗапуск
CuAlcos ȹ = 0,8cos ȹ = 0,35cos ȹ = 1cos ȹ = 0,8cos ȹ = 0,35cos ȹ = 1
1.52410,630209,425
2,514,46,418125,715
49,14,111,283,69,5
6106,12,97,55,32,56,2
10163,71,74,53,21,53,6
16252,361,152,82,0512,4
25351,50,751,81,30,651,5
35501,150,61,2910,521,1
50700,860,470,950,750,410,77
701200,640,370,640,560,320,55
951500,480,300,470,420,260,4
1201850,390,260,370,340,230,31
1502400,330,240,300,290,210,27
1853000,290,220,240,250,190,2
2404000,240,20,190,210,170,16
3005000,210,190,150,180,160,13

Падение напряжения при нормальной работе электродвигателя составит:

Для сечения 35 мм 2 ∆U на ток 1 А составит 1 В/км. Тогда при токе 100 А и длине кабеля 0,05 км потери будут равны ∆U = 1 В/А км∙100 А∙ 0,05 км = 5 В. При добавлении к ним падения напряжения на щите 10 В, получатся общие потери ∆Uобщ = 10 В + 5 В = 15 В. В результате потери в процентах составят:

∆U% = 100∙15/400 = 3,75 %.

Эта величина значительно меньше разрешенных потерь (8 %), и она считается допустимой.

При запуске электродвигателя, его ток увеличивается до 500 А. Это на 400 В больше его номинального тока. На эту же величину возрастет нагрузка на щите распределения. Она составит 1400 А. На нем падение напряжения пропорционально увеличится:

∆U = 10∙1400/1000 = 14 В.

По таблице падение напряжения в кабеле составит: ∆U = 0,52∙500∙0,05 = 13 В. В сумме пусковые потери двигателя составят ∆Uобщ = 13+14 = 27 В. После следует определить, сколько это будет в процентном отношении: ∆U = 27/400∙100 =6,75%. Результат оказывается в пределах допустимого, поскольку не превышает предельные 8%.

Защиту для электродвигателя следует подбирать таким образом, чтобы напряжения срабатывания было больше, чем при пуске.

Пример 3. Расчет ∆U в цепях освещения.

Три однофазные осветительные цепи подключены параллельно к питающей трехфазной четырехпроводной линии, состоящей из проводников на 70 мм 2 , длиной 50 м, проводящей ток 150 А. Освещение является только частью нагрузки линии (рис. б выше).

Каждая цепь освещения выполнена из медного провода длиной 20 м, сечением 2,5 мм 2 и проводит ток 20 А. Все три нагрузки подключены к одной фазе. При этом линия питания сбалансирована по нагрузкам.

Требуется определить падение напряжения в каждой из цепей освещения.

Падение напряжения в трехфазной линии определяется по действующей нагрузке, заданной в условиях примера: ∆Uлинии фаз= 0,55∙150∙0, 05 = 4,125 В. Это – потери между фазами. Для решения задачи надо найти потери между фазой и нейтралью: ∆Uлинии ф-н = 4,125/√3 = 2,4 В.

Падение напряжения для одной однофазной цепи составляет ∆Uосв = 18∙20∙0,02=7,2 В. Если сложить потери в питающей линии и цепи, то в сумме они составят ∆Uосв общ = 2,4+7,2 = 9,6 В. В процентном отношении это будет 9,6/230∙100 = 4,2 %. Результат является удовлетворительным, поскольку он меньше допустимой величины 6 %.

Проверка напряжения. Видео

Каким образом осуществляется проверка падения напряжения на кабелях разных видов, можно узнать из представленного ниже видео.

При подключении электроприборов важно правильно рассчитать и выбрать подводящие кабели и провода, чтобы потери напряжения в них не превышали допустимые. К ним также добавляются потери в питающей сети, которые следует суммировать.

Лекция 13. Допустимые падения напряжения. Расчет нагрузки отдельных ветвей сети

— рассмотрение допустимых падений напряжения в электрической сети.

— ознакомление с расчетами нагрузки отдельных ветвей сети.

Допустимые падения напряжения

При любом потреблении из электрической сети происходит возникновение электрического тока. Он при своем прохождении вызывает на этих проводках падения напряжения, следовательно, напряжение, подведенное к электроприемнику не равно напряжению на клеммах источника питания, а оно ниже. Для отдельных частей электрической проводки в то же время предписаны различные падения напряжения.

Для падения напряжения от источника питания к месту потребления можно исходить из предписанных отклонений напряжения (IEC 60 038), которые должны находиться в пределах + 6 % и  10 % от номинального значения (с 2003 года данные пределы должны быть ). Это означает, что общее падение напряжения от источника питания к самому месту потребления может составлять до 16 %.

В самой электрической инсталляции здания (т. е. внутри объекта) согласно IEC 60 634-5-52 рекомендовано, чтобы падение напряжения между началом инсталляции и эксплуатируемым оборудованием пользователя не было больше 4 % номинального напряжения инсталляции. Эта рекомендация в некоторой степени противоречит требованиям других национальных стандартов (например, CSN 33 2130 в Чешской Республике).

Можно допустить, что с учетом выполнения остальных требований при расчете параметров проводки могут возникнуть в некотором отрезке падения больше, чем указано выше, если в проводке от шкафа присоединения до самого электроприемника не будут превышены следующие падения: у осветительных выводов 4 %; у выводов для плит и отопительных приборов (стиральные машины) 6 %; у штепсельных розеток и остальных выводов 8 %.

«Правила устройств электроустановок» (ПУЭ) устанавливают наибольшие длительные допустимые нагрузки (силы тока в амперах) для изолированных проводов. Кабелей и голых проводов, которые приведены в виде таблицы. Таблицы эти составлены на основании теоретических расчетов и результатов непосредственных испытаний проводов и кабелей на нагревание.

Максимально допустимые по условиям нагрева нагрузки для проводов и кабелей с алюминиевыми жилами при одинаковым геометрическом сечении и одинаковом периметре с медными проводниками следует принимать равным 77% нагрузок для соответствующих медных проводников. Для силовых сетей допустимая длительная потеря напряжения не должна превышать 5%, а для сетей освещения 2,5% номинального.

Видно, что при суммировании всех допустимых падений напряжения (в распределительной сети и в электрической инсталляции) можем попасть на сам предел работоспособности некоторых приборов и оборудования. Например, у реле и контакторов гарантирована их функция от 85 % номинального напряжения и выше, у электродвигателей это, начиная с 90 % номинального напряжения. Поэтому необходимо руководствоваться выше указанной рекомендацией (падение напряжения до 4 %), приведенной в IEC 60 634-5-52.

Отмечаем, что требования национальных стандартов не касаются падений напряжения на некоторой части проводки, а требования, насколько напряжение может упасть по отношению к номинальному напряжению. На клеммах трансформатора может быть, например, напряжение равное 110 % номинального напряжения, от них потом падения напряжения могут быть 15 %, или же 13 %. Значит, у проектировщика определенное свободный простор, каким образом распределить падения напряжения в этих случаях от источника к электроприемнику.

Необходимо сказать, каким образом падения напряжения рассчитываются, или же, как они суммируются. Что касается чисто активных нагрузок, какими являются электрическое тепловое электрооборудование, и небольших сечений проводки, ситуация простая. Падения напряжения — это произведения токов и сопротивлений проводки, которые можно простым способом суммировать. В том случае, если речь идет об электрооборудовании, например, двигателях, характер потребления которых активный и индуктивный, и об общем импедансе Z проводки, состоящем из реальной составляющей (активное сопротивление) R и мнимой составляющей (индуктивное сопротивление) X, то данные комплексные величины взаимно умножаются. Результатом этого произведения опять является комплексная величина, значит комплексное падение напряжения. Она описывает падения напряжения в реальной и мнимой оси координат. Абсолютные значения этих падений напряжения на отдельных частях проводки от источника к электроприемнику поэтому не должны суммироваться стандартным способом, а должны суммироваться опять только как комплексные величины (т. е. реальные и мнимые составляющие отдельно).

Поэтому не должно удивлять то, что суммы абсолютных значений падений напряжения часто не являются точной суммой их абсолютных значений на отдельных, связанных друг с другом проводках.

Расчет нагрузки отдельных ветвей сети

Токовые нагрузки отдельных ветвей невозможно суммировать просто как арифметическую сумму абсолютных значений токов, а нужно суммировать отдельно реальные и мнимые составляющие. При соблюдении этих правил можно определить нагрузку при любой конфигурации сети. Аналогичные правила соблюдаются и при расчете токов короткого замыкания. И при коротком замыкании вычисления выполняются с импедансом сети, выраженным в комплексной форме.

Влияние нагрузки на ток короткого замыкания.

Нагрузка может оказывать существенное влияние на токи короткого замыкания. На рисунке 1 приведены простейшие схемы включения нагрузки. Характер нагрузок и соотношения их разные (асинхронные и синхронные двигатели, бытовая нагрузка, освещение), величина меняется в разные дни года, время суток, для различной сменности работ предприятий. Определить действительное значение нагрузки и увеличение ее сопротивления в момент короткого замыкания практически невозможно.

Условно считается, что сопротивление нагрузки постоянно по и величину , определенную по (1).

В нормальном режиме сопротивление нагрузки определяется по соотношению:

, (1)

где U – расчетное напряжение, равное вторичному напряжению питающего трансформатора;

Iн и Sн – ток и мощность нагрузки.

Мощность нагрузки принимается в зависимости от числа питающих трансформаторов. При одном трансформаторе мощность нагрузки принимается равной мощности трансформатора. При двух одинаковых трансформаторах мощность нагрузки принимается равной 0,65-0,7 мощности одного трансформатора. При аварийном отключении одного из двух трансформаторов всю нагрузку должен принять оставшийся в работе трансформатор. Нагрузка его при этом составит 130-140 % номинальной мощности.

Рисунок 1 — Распределение тока с учетом нагрузки, подключенной

к линии (а) и к шинам (б)

Из рисунка 1 видно, что при удаленном КЗ, когда напряжение на шинах снижается не до нуля, полный ток , проходящий через трансформатор, состоит из тока, ответвляющегося в нагрузку , и тока в месте короткого замыкания . Для схемы на рисунке 1,а полный ток КЗ определится по соотношению:

, (2)

а для схемы на рисунке 1 б – по соотношению:

, (3)

В действительности сопротивления имеют разные соотно- шения х/r и вычислять токи по формулам (2) и (3) следовало бы в комплексной форме. Но для большинства сетей отношение z и L нагрузки и линий близки, мало по сравнению с , и для упрощения расчетов уравнения (2) и (3) решаются в полных сопротивлениях z. Такое допущение тем более оправдано, что действительная нагрузка в момент КЗ неизвестна.

Полный ток делится на две части: часть тока , идущая к месту КЗ в схеме на рисунке 1,а, определяется:

, (4)

а для схемы на рисунке 1,б – по формуле:

, (5)

Из выражения (5) видно, что при zс = 0 ток к месту КЗ составляет , то есть нагрузка не влияет на значение тока короткого замыкания, если она подключена к шинам бесконечной мощности.

Анализ выражений (2)–(5) и рисунок 2 позволяет сделать следующие выводы:

— в схеме на рисунке 1,а при отсутствии нагрузки ток в месте КЗ и ток, проходящий через трансформатор от системы, близки по значению;

— при наличии нагрузки ток в месте КЗ по схеме на рисунке 2,а наименьший, по нему проверяется чувствительность защит сети; ток от системы через трансформатор наибольший, по нему согласовываются защиты трансформатора и сети.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector