Oncool.ru

Строй журнал
2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое шиносоединительный выключатель

Что такое шиносоединительный выключатель

Вы можете воспользоваться поиском готовых работ или же получить помощь по подготовке нового реферата практически по любому предмету. Также вы можете добавить свой реферат в базу.

Последствия от ошибочного включения или отключе­ния тока разъединителями зависят от того, какими разъединителями—.шинными или линейными—произ­водится операция. Поэтому первыми должны включаться, а последними отключаться разъединители, неправильное действие которых мо­жет привести к более тяжелым последствиям. Например, при ошибочном отключении линейного разъединителя 1 (под нагрузкой) линии Л4, (вместо подлежащего к отклю­чению разъединителя линии Л2, У которого отключен выключатель) дуга будет прервана отключением вы­ключателя линии Л4 (рис. 1). Поскольку дуга в этом случае возникает за реактором линии Л4, то размеры ее будут значительно меньше.

При ошибочном же отключении (под нагрузкой) шинного разъединителя 2 линии Л4 от второй системы шин (место подлежащего отключению шинного разъеди­нителя линии Л2, от второй системы, выключатель, кото­рый отключен) дуга будет гореть дольше, т. е. до тех пор, пока не будут отключены все источники питания, работающие на второй системе шин (трансформатор Т2, генератор Г2 и синхронный двигатель Д), и объем по­вреждения в этом случае будет значительно больше. Такая ошибка обязательно вызовет повреждение сбор­ных шин, обесточение линий Л2, Л4 и синхронного дви­гателя Д на длительное время, т. е. на время, необходи­мое для полного восстановления поврежденных сборных шин. Следует отметить, что уставка по времени на релейнои защите линии Л4 значительно меньше, чем на трансформаторе Т2, генераторе Г2 и двигателе Д. По­этому при ошибочном отключении линейного разъедини­теля 1 линии Л4 продолжительность горения дуги будет в 3—4 раза меньше, чем при ошибочном отключении шинного разъединителя 2.

Энергосистема

Исходя из этого ясно, что всегда следует сначала включать шинные, затем линейные разъединители и только потом выключатель. При отключении сначала следует отключить выключатель, затем линейные разъ­единители, а потом шинные.

Последовательность включения и отключения выклю­чателей силовых трансформаторов производится исходя из следующих соображений.

Трансформатор Т1, прошедший восстановительный ремонт, требуется включить в параллельную работу с работающим трансформатором Г2 (рис. 2).

Как известно, прошедший ремонт трансформатор ста­вится под напряжение толчком. При включении транс­форматора Т2 выключателем В1 в случае неисправности трансформатора выключатель В1 автоматически отключится от действия защиты. Включе­ние и отключение трансфор­матора при этом не влияют на работу электроприемников, питающихся от РУ 10 кв че­рез трансформатор Т2. Если неисправный трансформатор Т12 включить сначала выклю­чателем В3, то на ток нагруз­ки работающего трансформа­тора Т2 будет накладываться ток к. з. поврежденного транс­форматора Т1, что вызовет от­ключение релейной защитой работающего трансформатора Т2 и полное обесточение РУ 10 кв.

Энергосистема

В практике имели место случаи отключения работаю­щего трансформатора от дей­ствия релейной защиты, когда к номинальному току ра­ботающего трансформатора накладывался намагничивающий ток включаемого трансформатора. Поэтому вклю­чение трансформаторов следует производить со стороны высшего напряжения.

Порядок перевода присоединений с од пой системы шин на другую:

а) убедиться в том, что защита ШСВ включена с уставками, указанными в местных инструкциях по за­щите .(если на выключателе имеется специальная авто­матика, отключить ее);

б) убедиться в том, что напряжения обеих систем шин синхронны и равны по величине;

г) отключить защиту и оперативный ток с привода ШСВ;

д) по механическому указателю (или по состоянию

рабочих контактов выключателя) проверить включенное положение выключателя;

е) включить шинные разъединители всех намеченных к переводу присоединений на ту систему шин, с которой намечается их питание; затем, если в этом есть надоб­ность, перевеет питание измерительных приборов, при­боров учета, защиты и сигнализации, переводимых при­соединений на соответствующие цепи трансформаторов напряжения;

ж) отключить шинные разъединители переводимых

присоединений от системы шин, с которой они ранее пи­тались;

з) включить оперативный ток на привод, после чего отключить ШСВ;

и) проверить отключение ШСВ;

к) включить защиту ШСВ и специальную автома­тику.

Порядок производства операций при переводе всех присоединений с рабочей системы шин на резервную при наличии шиносоединительного выключателя:

а) убеждаются по оперативной схеме, что система

шин находится в резерве, и производят внешний осмотр резервной системы шин;

б) включают ШСВ с подключенной на нем защитой

от коротких замыканий (с нулевой установкой по вре­мени);

в) проверяют наличие напряжения на резервной си­стеме шин по вольтметрам;

г) отключают оперативный ток с привода и защиты на ШСВ (рубильником, накладкой и пр.);

д) производят перевод питания цепей напряжения за­щиты присоединений с трансформаторов напряжения ра­бочей системы шин на трансформаторы напряжения резервной системы (согласно местной инструкции);

е) производят перевод разъединителей присоедине­ний с одной системы шин на другую (согласно местной инструкции, учитывающей конструктивные особенности РУ и управления разъединителями);

ж) проверяют качество включения разъединителей на резервную систему шин;

з) проверяют отсутствие нагрузки на ШСВ по ампер­метру;

и) включают оперативный ток на привод И отклю­чают ШСВ.

При отсутствии ШСВ частичный перевод присо­единений с одной системы шин на другую запрещается.

При полном переводе присоединений, в случае отсут­ствия ШСВ, включают шинные разъединители на ре­зервную систему шип одного из мощных источников и держат их в этом состоянии до конца переключения. Это присоединение переводится последним после тщательной проверки перевода всех остальных присоединений.

При переводе присоединений особенно тщательно необходимо следить за тем, чтобы не включить разъеди­нители присоединений, не находящихся в работе.

При переводе присоединения необходимо предусмо­треть сохранение правильного питания цепей напряже­ния измерительных приборов релейной защиты и авто­матики.

Когда ШСВ находится в резерве, его разъединители, как правило, должны быть включены на обе системы шин. Трансформатор напряжения резервной системы шин должен быть также включен.

7. Бланк переключения

Бланк переключения, составляемый для предупреж­дения возможных неправильных операций, является основным оперативным документом, определяющим со­держание задания и последовательность производства особо опасных и сложных переключений. По бланкам переключения производятся операции в схемах электро­установок напряжением выше 1 000 в, когда РУ не обо­рудованы или оборудованы неполностью блокировоч­ными устройствами от неправильных операций с разъ­единителями, и сложные переключения.

Читать еще:  Выключатель взрывозащ ghg 273 2000 r0017

В бланк переключения вносятся не только операции с переключающими аппаратами, но также и другие опе­рации, как-то:

включение и отключение оперативного тока;

проверка отсутствия напряжения;

операции с защитой или спецавтоматикой;

отключение и включение цепей питания зашиты, измерительных приборов и автоматики;

ввод и вывод АПВ, АВР, АЧР;

наложение или снятие защитных переносных зазем­лений.

Ниже показана примерная форма бланка переклю­чений и его заполнение.

Бланк заполняется непосредственно перед началом переключений после получения распоряжения тем ли­цом, которое получило распоряжение.

Каждая операция или действие, вносимое в бланк, должно иметь порядковый номер, каждый бланк пере­ключений проверяется и подписывается.

Рекомендуемая схема расстановки стационарных за­земляющих ножей в РУ высокого напряжения к при­меру заполнения бланка переключений № 152 (рис. 3) позволяет полностью отказаться от применения перенос­ных заземлений. При этом отключенные для работы части установки заземляются со всех сторон, откуда мо­жет быть подано напряжение.

Онлайн журнал электрика

Статьи по электроремонту и электромонтажу

  • Справочник электрика
    • Бытовые электроприборы
    • Библиотека электрика
    • Инструмент электрика
    • Квалификационные характеристики
    • Книги электрика
    • Полезные советы электрику
    • Электричество для чайников
  • Справочник электромонтажника
    • КИП и А
    • Полезная информация
    • Полезные советы
    • Пусконаладочные работы
  • Основы электротехники
    • Провода и кабели
    • Программа профессионального обучения
    • Ремонт в доме
    • Экономия электроэнергии
    • Учёт электроэнергии
    • Электрика на производстве
  • Ремонт электрооборудования
    • Трансформаторы и электрические машины
    • Уроки электротехники
    • Электрические аппараты
    • Эксплуатация электрооборудования
  • Электромонтажные работы
    • Электрические схемы
    • Электрические измерения
    • Электрическое освещение
    • Электробезопасность
    • Электроснабжение
    • Электротехнические материалы
    • Электротехнические устройства
    • Электротехнологические установки

Сборные шины распределительных устройств

Необходимость соединения меж собой подводящих и отводящих электроэнергию линий обусловливает применение на станциях, подстанциях, распределительных устройствах и пт сборных шин.

К сборным шинам присоединяют все генераторы либо трансформаторы, вводы и отходящие полосы. Электронная энергия поступает на сборные шины и по ним распределяется к отдельным отходящим линиям. Таким макаром, сборные шины являются узловым пт схемы соединения, через который протекает вся мощность станции, подстанции либо распределительного пт . Повреждение либо разрушение сборных шин значит прекращение подачи электроэнергии потребителям. Потому сборным шинам уделяют суровое внимание при проектировании, монтаже и эксплуатации электроустановок.

Простейшей системой является так именуемая одиночная система шин (рис. 1), используемая в электроустановках малой мощности с одним источником питания.

Рис. 1. Одиночная система шин

На станциях и подстанциях, имеющих два и поболее трансформатора либо генератора, в целях увеличения надежности снабжения потребителей электроэнергией шины секционируют, т. е. делят на две, а время от времени и большее число частей. К каждой секции должно быть присоединено по способности равное число генераторов либо трансформаторов и отходящих линий (рис. 2).

Рис. 2. Одиночная секционированная система шин с межсекционным разъединителем

Секционирование шин докладывает схеме огромную эксплуатационную упругость (при выходе из работы одной секции шин отключается только часть вводов и отходящих линий).

Отдельные секции шин могут быть соединены меж собой разъединителями либо выключателями. При секционировании шин разъединителем последний большей частью разомкнут. При всем этом обе секции работают раздельно, и при повреждении одной из секций питания лишается только часть потребителей. Не считая того, при раздельной работе трансформаторов понижаются токи недлинного замыкания на стороне вторичного напряжения.

В случае повреждения трансформатора его отключают и обе секции соединяют меж собой разъедиителем, отключив за ранее для предотвращения перегрузки неответственные потребители.

Допустима также работа с включенным разъединителем для обеспечения равномерного рассредотачивания нагрузки меж питающими линиями. В данном случае при аварии на одной из секций прекращается питание электроэнергией всех потребителей на время, нужное для разделения секций. В случае же автоматического отключения 1-го из источников питания 2-ой источник будет перегружен в течение времени, нужного для отключения неответственных потребителей.

При наличии межсекционного выключателя (рис. 3) последний может быть также при работе замкнутым либо разомкнутым.

Рис. 3. Одиночная секционированная система шин с межсекционным выключателем

При работе с замкнутым выключателем его пичкают наибольшей токовой защитой, которая автоматом отключает покоробленную секцию. Но такое решение не рекомендуется, так как оно не дает существенных преимуществ по сопоставлению со схемами с межсекционными разъединителями.

Применение межсекционного выключателя рекомендуется исключительно в тех случаях, когда он употребляется для автоматического включения запасного питания от другого рабочего источника и при обычной работе электроустановки находится в разомкнутом состоянии.

При наличии на подстанции одиночной секционированной системы шин резервирующие друг дружку отходящие полосы следует присоединять к разным секциям шин.

Для большей надежности питания и большего удобства эксплуатационных переключений на больших станциях и подстанциях используют двойную систему шин (рис. 4), которая допускается только при наличии соответственного обоснования в каждом отдельно взятом случае.

Рис. 4. Двойная система сборных шин

При обычной работе электроустановки одна система шин является рабочей, а другая — запасной. Обе системы шин могут быть соединены меж собой шиносоединительным выключателем, который позволяет выполнить переход с одной системы шин на другую без перерыва в подаче энергии, также может быть применен в качестве подмены хоть какого из выключателей электроустановки. В последнем случае линию, с которой выключатель снят для ремонта, присоединяют к запасной системе шин и соединяют рабочую и запасную системы шин шиносоединительным выключателем.

Что такое шиносоединительный выключатель

Электролаборатория » Вопросы и ответы » ПУЭ 7 издание » 3.2.119 — 3.2.130. Защита шин, защита на обходном, шиносоединительном и секционном выключателях

ЗАЩИТА ШИН, ЗАЩИТА НА ОБХОДНОМ, ШИНОСОЕДИНИТЕЛЬНОМ И СЕКЦИОННОМ ВЫКЛЮЧАТЕЛЯХ

3.2.119. Для сборных шин 110 кВ и выше электростанций и подстанций отдельные устройства релейной защиты должны быть предусмотрены:
1) для двух систем шин (двойная система шин, полуторная схема и др.) и одиночной секционированной системы шин;
2) для одиночной несекционированной системы шин, если отключение повреждений на шинах действием защит присоединенных элементов недопустимо по условиям, которые аналогичны приведенным в 3.2.108, или если на линиях, питающих рассматриваемые шины, имеются ответвления.

Читать еще:  Технология монтажа автоматического выключателя

3.2.120. Для сборных шин 35 кВ электростанций и подстанций отдельные устройства релейной защиты должны быть предусмотрены:
по условиям, приведенным в 3.2.108;
для двух систем или секций шин, если при использовании для их разделения защиты, установленной на шиносоединительном (секционном) выключателе, или защит, установленных на элементах, которые питают данные шины, не удовлетворяются требования надежности питания потребителей (с учетом возможностей, обеспечиваемых устройствами АПВ и АВР).

3.2.121. В качестве защиты сборных шин электростанций и подстанций 35 кВ и выше следует предусматривать, как правило, дифференциальную токовую защиту без выдержки времени, охватывающую все элементы, которые присоединены к системе или секции шин. Защита должна осуществляться с применением специальных реле тока, отстроенных от переходных и установившихся токов небаланса (например, реле, включенных через насыщающиеся трансформаторы тока, реле с торможением).
При присоединении трансформатора (автотрансформатора) 330 кВ и выше более чем через один выключатель рекомендуется предусматривать дифференциальную токовую защиту ошиновки.

3.2.122. Для двойной системы шин электростанций и подстанций 35 кВ и выше с одним выключателем на присоединенный элемент дифференциальная защита должна быть предусмотрена в исполнении для фиксированного распределения элементов.
В защите шин 110 кВ и выше следует предусматривать возможность изменения фиксации при переводе присоединения с одной системы шин на другую на рядах зажимов.

3.2.123. Дифференциальная защита, указанная в 3.2.121 и 3.2.122, должна быть выполнена с устройством, контроля исправности вторичных цепей задействованных трансформаторов тока, действующим с выдержкой времени на вывод защиты из работы и на сигнал.

3.2.124. Для секционированных шин 6-10 кВ электростанций должна быть предусмотрена двухступенчатая неполная дифференциальная защита, первая ступень которой выполнена в виде токовой отсечки по току и напряжению или дистанционной защиты, а вторая — в виде максимальной токовой защиты. Защита должна действовать на отключение питающих элементов и трансформатора собственных нужд.
Если при указанном выполнении второй ступени защиты не обеспечивается требуемая чувствительность при КЗ в конце питаемых реактированных линий (нагрузка на шинах генераторного напряжения большая, выключатели питаемых линий установлены за реакторами), следует выполнять ее в виде отдельных комплектов максимальных токовых защит с пуском или без пуска напряжения, устанавливаемых в цепях реакторов; действие этих комплектов на отключение питающих элементов должно контролироваться дополнительным устройством, срабатывающим при возникновении КЗ. При этом на секционном выключателе должна быть предусмотрена защита (предназначенная для ликвидации повреждений между реактором и выключателем), вводимая в действие при отключении этого выключателя. При выделении части питающих элементов на резервную систему шин должна быть предусмотрена неполная дифференциальная защита шин в исполнении для фиксированного распределения элементов.
Если возможны частые режимы работы с разделением питающих элементов на разные системы шин, допускается предусматривать отдельные дистанционные защиты, устанавливаемые на всех питающих элементах, кроме генераторов.

3.2.125. Для секционированных шин 6-10 кВ электростанций с генераторами мощностью 12 МВт и менее допускается не предусматривать специальную защиту; при этом ликвидация КЗ на шинах должна осуществляться действием максимальных токовых защит генераторов.

3.2.126. Специальные устройства релейной защиты для одиночной секционированной и двойной систем шин 6-10 кВ понижающих подстанций, как правило, не следует предусматривать, а ликвидация КЗ на шинах должна осуществляться действием защит трансформаторов от внешних КЗ и защит, установленных на секционном или шиносоединительном выключателе. В целях повышения чувствительности и ускорения действия защиты шин мощных подстанций допускается применять защиту, включенную на сумму токов питающих элементов. При наличии реакторов на линиях, отходящих от шин подстанций, допускается защиту шин выполнять по аналогии с защитой шин электростанций.

3.2.127. При наличии трансформаторов тока, встроенных в выключатели, для дифференциальной защиты шин и для защит присоединений, отходящих от этих шин, должны быть использованы трансформаторы тока, размещенные с разных сторон выключателя, чтобы повреждения в выключателе входили в зоны действия этих защит.
Если выключатели не имеют встроенных трансформаторов тока, то в целях экономии следует предусматривать выносные трансформаторы тока только с одной стороны выключателя и устанавливать их по возможности так, чтобы выключатели входили в зону действия дифференциальной защиты шин. При этом в защите двойной системы шин с фиксированным распределением элементов должно быть предусмотрено использование двух сердечников трансформаторов тока в цепи шиносоединительного выключателя.
При применении отдельных дистанционных защит в качестве защиты шин трансформаторы тока этих защит в цепи секционного выключателя должны быть установлены между секцией шин и реактором.

3.2.128. Защиту шин следует выполнять так, чтобы при опробовании поврежденной системы или секции шин обеспечивалось селективное отключение системы (секции) без выдержки времени.

3.2.129. На обходном выключателе 110 кВ и выше при наличии шиносоединительного (секционного) выключателя должны быть предусмотрены защиты (используемые при проверке и ремонте защиты, выключателя и трансформаторов тока любого из элементов, присоединенных к шинам);
трехступенчатая дистанционная защита и токовая отсечка от многофазных КЗ;
четырехступенчатая токовая направленная защита нулевой последовательности от замыкания на землю.
При этом на шиносоединительном (секционном) выключателе должны быть предусмотрены защиты (используемые для разделения систем или секций шин при отсутствии УРОВ или выведении его или защиты шин из действия, а также для повышения эффективности дальнего резервирования):
двухступенчатая токовая защита от многофазных КЗ;
трехступенчатая токовая защита нулевой последовательности от замыканий на землю.
Допускается установка более сложных защит на шиносоединительном (секционном) выключателе, если это требуется для повышения эффективности дальнего резервирования.
На шиносоединительном (секционном) выключателе 110 кВ и выше, предназначенном и для выполнения функции обходного выключателя, должны быть предусмотрены те же защиты, что на обходном и шиносоединительном (секционном) выключателях при их раздельном исполнении.
Рекомендуется предусматривать перевод основных быстродействующих защит линий 110 кВ и выше на обходной выключатель.
На шиносоединительном (секционном) выключателе 3-35 кВ должна быть предусмотрена двухступенчатая токовая защита от многофазных КЗ.

3.2.130. Отдельную панель защиты, предназначенную специально для использования вместо выводимой на проверку защиты линии, следует предусматривать при схемах электрических соединений, в которых отсутствует обходной выключатель (например, четырехугольник, полуторная схема и т. п.); такую отдельную панель защиты следует предусматривать для линий 220 кВ, не имеющих отдельной основной защиты; для линий 330-500 кВ.
Допускается предусматривать отдельную панель защиты для линий 110 кВ, не имеющих отдельной основной защиты, при схемах электрических соединений «мостик» с выключателями в цепях линий и «многоугольник», если при проверке защиты линии ликвидировать повреждения на ней в соответствии с предъявляемыми требованиями более простыми средствами технически невозможно.

Читать еще:  Ip44 степень защиты расшифровка выключатель

А.2.24. Схема с двумя системами сборных шин

С учетом особенностей электроприемников (I, II категории), схемы электроснабжения их (отсутствие резерва по сети), а также большого количества присоединений к сборным шинам для главного распределительного устройства ТЭЦ при технико-экономическом обосновании может предусматриваться схема с двумя системами сборных шин (рис. 5.11), в которой каждый элемент присоединяется через развилку двух шинных разъедините­лей, что позволяет осуществлять работу как на одной, так и на другой си­стеме шин. На рис. 5.11 схема изображена в рабочем состоянии: генера­торы G1 и G2 присоединены на первую систему сборных шин А.2, от которой получают питание групповые реакторы и трансформаторы связи Т1 и Т2. Рабочая система шин секционирована выключателем QB и реак­тором LRB, назначение которых такое же, как и в схеме с одной системой шин. Вторая система шин А2 является резервной, напряжение на ней нор­мально отсутствует. Обе системы шин могут быть соединены между собой шиносоединительными выключателями QA1 и QA2, которые в нормаль­ном режиме отключены. Возможен и другой режим работы этой схемы, когда обе системы шин находятся под напряжением и все присоединения распределяются между ними равномерно. Такой режим, называемый работой с фиксированным присоединением цепей, обычно применяется на шинах повышенного напря­жения. Схема с двумя системами шин позволяет производить ремонт одной системы шин, сохраняя в работе все присоединения.

Рассматриваемая схема является гибкой и достаточно надежной. К недостаткам ее следует отнести большое количество разъединителей, изоляторов, токоведущих материалов и выключателей, более сложную кон­струкцию распределительного устройства, что ведет к увеличению капитальных затрат на сооружение ГРУ.

А.2.25. Схема с двумя рабочими и обходной системами шин

Для РУ 110 – 220 кВ с большим числом присоединений применяется схема с двумя рабочими и обходной системами шин с одним выключате­лем на цепь (рис. 5.15, а). Как правило, обе системы шин находятся в рабо­те при соответствующем фиксированном распределении всех присоедине­ний: линии Wl, W3, W5 и трансформатор Т1 присоединены к первой системе шин А.2, линии W2, W4, W6 и трансформатор Т2 присоединены ко второй системе шин А2, шиносоединительный выключатель QA включен. Такое распределение присоединений увеличивает надежность схемы, так как при КЗ на шинах отключаются шиносоединительный выключатель QA и только половина присоединений. Если повреждение на шинах устойчи­вое, то отключившиеся присоединения переводят на исправную систему шин. Перерыв электроснабжения половины присоединений определяется длительностью переключений. Рассмотренная схема рекомендуется для РУ 110 – 220 кВ на стороне ВН и СН подстанций при числе присоединений–15 [5.5], а также на электростанциях при числе присоединений до 12 [5.1]. Следует отметить, что для РУ 110 кВ и выше суще­ственными становятся недостатки этой схемы:

– отказ одного выключателя при аварии приводит к отключению всех ис­точников питания и линий, присоединенных к данной системе шин, а если в работе находится одна система шин, отключаются все присоединения. Ликвидация аварии затягивается, так как все операции по переходу с одной системы шин на другую производятся разъединителями. Если ис­точниками питания являются мощные блоки турбогенератор –трансфор­матор, то пуск их после сброса нагрузки на время более 30 мин может за­нять несколько часов;

– повреждение шиносоединительного выключателя равноценно К3 на обеих системах шин, т. е. приводит к отключению всех присоединений;

– большое количество операций разъединителями при выводе в ревизию и ремонт выключателей усложняет эксплуатацию РУ;

– необходимость установки шиносоединительного, обходного выключа­телей и большого количества разъединителей увеличивает затраты на со­оружение РУ.

Некоторого увеличения гибкости и надежности схемы можно достичь секционированием одной или обеих систем шин.

На ТЭС и АЭС при числе присоединений 12-16 секционируется одна система шин, при большем числе присоединений — обе системы шин [5.1, На подстанциях секционируется одна система шин при U –220 кВ при числе присоединений 12-15 или при установке трансформаторов мощ­ностью более 125 MB-А; обе системы шин 110-220 кВ секционируются при числе присоединений более 15 [5.5].

Если сборные шины секционированы, то для уменьшения капитальных затрат возможно применение совмещенных шиносоединительного и обходного выключателей QOA (рис. 5.15,6). В нормальном режиме разъеди­нители QS1, QSO, QS2 включены и обходной выключатель выполняет роль шиносоединительного. При необходимости ремонта одного выключателя отключают выключатель QOA и разъединитель QS2 и используют, обход­ной выключатель по его прямому назначению. В схемах с большим чис­лом линий количество таких переключений в год значительно, что приво­дит к усложнению эксплуатации, поэтому имеются тенденции к отказу от совмещения шиносоединительного и обходного выключателей [5.5].

В схеме с секционированными шинами при повреждении на шинах или при КЗ в линии и отказе выключателя теряется только 25 % присоединений (на время переключений), однако при повреждении в секционном выключа­теле теряется 50% присоединений.

Для электростанций с мощными энергоблоками (300 МВт и более) уве­личить надежность схемы можно, присоединив источники или автотранс­форматоры связи через развилку из двух выключателей (рис. 5.15, в). Эти выключатели в нормальном режиме выполняют функции шиносоедини­тельного. При повреждении на любой системе шин автотрансформатор остается в работе, исключается возможность потери обеих систем шин.

Дата добавления: 2018-04-04 ; просмотров: 1103 ; Мы поможем в написании вашей работы!

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector