Oncool.ru

Строй журнал
11 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое вывод вакуумный выключатель

Вакуумный выключатель

Вакуумный выключатель — выключатель, в котором вакуум служит средой для гашения электрической дуги.
Вакуумные выключатели предназначены для коммутаций (операций включения-отключения) электрического тока — номинального и токов короткого замыкания (КЗ) в электроустановках.

История создания
История их развития говорит об исключительной сложности создания таких аппаратов. Идея коммутации тока в вакууме появилась ещё в XIX в., но первые серьезные исследования в этой области были предприняты лишь в 1923-1926 гг. Соренсоном и Менденхоллом из Калифорнийского технологического университета (США), создавшими ВВ (вакуумный выключатель), способный коммутировать токи до 1000 А при напряжениях до 40 кВ. Патентные права на использование разработок калифорнийских ученых приобрела General Electric (GE), но создать ВДК ( вакуумная дугогасительная камера ) с надежной контактной системой и получить аппараты, не требующие контроля вакуума и постоянного ремонта, не удавалось. Причиной этого были несовершенные на тот момент технологии по изготовлению ВВ. Лишь с 1960 г. GE был начат серийный выпуск ВДК для промышленных выключателей, и первым коммерческим продуктом на их основе стал вакуумный реклоузер (столбовой выключатель) на 15 кВ с номинальным рабочим током 600 А и током отключения 12 кА. Рыночный успех вакуумных продуктов GE подстегнул других производителей коммутационной техники к созданию ВВ. В СССР работа над ВВ велась под руководством профессора В.Л. Грановского в ВЭИ им. В.И. Ленина. Там были разработаны первые отечественные ВДК, которые в 1959-1962 гг. в составе выключателей поступили в эксплуатацию. Значимым событием стало открытие в Минусинске завода вакуумных аппаратов. В 1981 г. здесь были выпущены первые серийные ВВ типа ВВТЭ-10-10 и ВВТП-10-10. Но наиболее активно вакуумная коммутационная техника в России развивается с 1990 г. С этого момента над созданием ВВ начала работать Таврида Электрик и ряд других отечественных производителей («Контакт», «ЭЛВЕСТ»). Сначала объем выпускаемых ВВ был почти незаметен на фоне масляных выключателей. Но к 2006 г. ситуация кардинально изменилась и доля ВВ на российском рынке выключателей достигла 90%. Путь к таким позициям был непрост, и важную роль в популяризации новой техники сыграла компания Таврида Электрик.
В настоящее время в мире налажен промышленный выпуск высоконадежных быстродействующих вакуумных выключателей, способных отключать большие токи в электрических сетях среднего (6, 10, 35 кВ) и высокого напряжения (до 50 кВ включительно). На рынке стоимость ВВ варьируется от 2500 до 25000$.
При массовом производстве стоимость вакуумных выключателей всего на 5-15% больше стоимости маломасляных и меньше стоимости электромагнитных. Большая экономия при эксплуатации делает эти выключатели высокоэффективными, что обуславливает их все более широкое распространение (в Японии 50% всех выключателей вакуумные).
Ведущие производители вакуумных выключателей сегодня это: Промышленная группа Таврида Электрик (ПГТЭ), компания General Electric, Нижнетуринский электроаппаратный завод («НТЭАЗ-Электрик»).

Принцип действия
Поскольку разрежённый газ обладает электрической прочностью, в десятки раз превышающей прочность газа при атмосферном давлении, то это свойство широко используется в высоковольтных выключателях: в них при размыкании контактов в вакууме сразу же после первого прохождения тока в дуге через ноль изоляция восстанавливается, и дуга вновь не загорается.
В момент размыкания контактов в вакуумном промежутке коммутируемый ток инициирует возникновение электрического разряда — вакуумной дуги, существование которой поддерживается за счет металла, испаряющегося с поверхности контактов в вакуумный промежуток. Плазма, образованная ионизированными парами металла, проводит электрический ток, поэтому ток протекает между контактами до момента его перехода через ноль. В момент перехода тока через ноль дуга гаснет, а оставшиеся пары металла мгновенно (за 7-10 микросекунд) конденсируются на поверхности контактов и других деталей дугогасящей камеры, восстанавливая электрическую прочность вакуумного промежутка. В то же время на разведенных контактах восстанавливается приложенное к ним напряжение ( иллюстрация выключателя взята с ru.wikipedia.org).

Конструктивные особенности
Как уже ранее говорилось вакуумные выключатели — это коммутационные аппараты нового поколения, в основе принципа действия которых лежит гашение возникающей при размыкании контактов электрической дуги в глубоком вакууме, а фиксация контактов вакуумных дугогасительных камер (ВДК) в замкнутом положении осуществляется за счет остаточной индукции приводных электромагнитов («магнитная защелка»).В настоящее время ВВ также устанавливаются на тележках КРУ , что очень упрощает их ремонт.

Включение выключателя
Исходное разомкнутое состояние контактов 1,3 вакуумного выключателя вакуумной дугогасительной камеры выключателя обеспечивается за счет воздействия на подвижный контакт 3 отключающий пружины 7 через тяговый изолятор 5 . При подаче сигнала «ВКЛ» блок управления выключателя формирует импульс напряжения положительной полярности, который прикладывается к катушкам 9 электромагнитов . При в зазоре магнитной системы появляется электромагнитная сила притяжения, по мере своего возрастания преодолевающая усилие пружин отключения 7 и поджатия 6 , в результате чего под действием разницы указанных сил якорь электромагнита 11 вместе с тяговым изолятором 5 и подвижным контактом 3 вакуумной камеры 2 начинает движение в направлении неподвижного контакта 1 , сжимая при этом пружину отключения 7 .
После замыкания основных контактов якорь электромагнита продолжает двигаться вверх, дополнительно сжимая пружину поджатия 6 . Движение якоря продолжается до тех пор, пока рабочий зазор в магнитной системе электромагнита не станет равным нулю. Далее кольцевой магнит 10 продолжает запасать магнитную энергию, необходимую для удержания выключателя во включенном положении, а катушка 9 начинает обесточиваться, после чего привод оказывается подготовленным к операции отключения. Таким образом, выключатель становится на магнитную защелку, т.е. энергия управления для удержания контактов 1 и 3 в замкнутом положении не потребляется.
В процессе включения выключателя пластина 13 , входящая в прорезь вала 14 , поворачивает этот вал, перемещая установленный на нем постоянный магнит 15 и обеспечивая срабатывание герконов 16 , коммутирующих внешние вспомогательные цепи.

Отключение выключателя
При подаче сигнала «ОТКЛ» блок управления формирует импульс тока, который имеет противоположное направление по отношению к току включения и меньшее амплитудное значение. Магнит 10 при этом размагничивается, привод снимается с защелки, и под действием энергии, накопленной в пружинах отключения 7 и поджатия 6 якорь 11 перемещается вниз, в процессе движения ударяя по тяговому изолятору 5 , связанному с подвижным контактом 3 . Контакты 1 и 3 размыкаются, и выключатель отключает нагрузку.

Достоинства вакуумных выключателей
1. Высокая износостойкость при коммутации номинальных токов и токов КЗ.
2. Снижение эксплуатационных затрат, простота эксплуатации.
3. Быстрое восстановление электрической прочности.
4. Полная взрыво- и пожаробезопасность.
5. Повышенная устойчивость к ударным и вибрационным нагрузкам.
6. Произвольное рабочее положение вакуумной дугогасительной камеры (ВДК) в конструкции выключателя.
7. Широкий диапазон температур окружающей среды, в котором может работать ВДК (от -70° до + 200° С).
8. Безшумность, чистота, удобство обслуживания, обусловленные малым выделением энергии в дуге и отсутствием внешних эффектов при отключении токов КЗ.
9. Отсутствие загрязнения окружающей среды.
10. Высокое быстродействие, применение для работы в любых циклах АПВ.
11. Сравнительно малые массы и габариты, небольшие динамические нагрузки на конструкцию при работе из-за относительно малой мощности привода.
12. Легкая замена ВДК.
13. Отсутствие необходимости в замене и пополнении дугогасящей среды и масляного.

Читать еще:  Выключатель вбм 10 контакт

Недостатки вакуумных выключателей
1. Трудности при создании и изготовлении, связанные с созданием
контактных материалов, сложностью вакуумного производства,
склонностью материалов контактов к сварке в условиях вакуума.
2. Большие вложения, необходимые для осуществления технологии
производства, и поэтому большая стоимость.
3. Возможные коммутационные перенапряжения при отключении малых индуктивных токов.

Сравнение элегазового и вакуумного высоковольтного выключателей

Здравствуйте уважаемые посетители сайта «Помощь электрикам» Сегодня бы хотел произвести сравнение конструктивных особенностей и способов эксплуатации двух высоковольтных выключателей. Элегазового выключателя и Вакуумного выключателя.

Здравствуйте уважаемые посетители сайта «Помощь электрикам» Сегодня бы хотел произвести сравнение конструктивных особенностей и способов эксплуатации двух высоковольтных выключателей. Элегазового выключателя и Вакуумного выключателя.

Преимущества и недостатки элегаза.

В нормальных условиях элегаз является инертным газом без запаха, невоспламеняющийся, нержавеющий и не токсичный. Тем не менее, при температуре выше 1000°C, элегаз разлагается на составляющие газы, включая газ S2F 10, который очень токсичен. К счастью, продукты распада внезапно воссоединяются после погасания дуги (при снижении температуры). В соответствии с электрической прочностью, элегаз обладает лучшими свойствами, чем вакуум (График). Поэтому элегаз используется в качестве изоляционного материала и дугогасительной среды. Использование элегаза позволяет делать электрооборудование более компактного размера и предоставляет больше пространства для его устройства. Это и лежит в основе того, почему приблизительно 50% общего объема элегаза является диэлектриком в таких электрических приборах, как высоковольтный переключатель.

Можно предположить, что элегаз стал прекрасной дугогасительной средой для высоковольтного выключателя, если бы он не был так опасен для окружающей среды. Элегаз является одним из опасных нагретых газов на планете, как было установлено на 3-й Сессии Конференции Участников ООН Рамочной Конвенции о климатических изменениях. Тот факт, что элегаз представляет собой особую угрозу для мирового сообщества, основан на его стабильном молекулярном составе, так как этот газ неразрушим уже в течение 3200 лет.

Преимущества и недостатки вакуума .

Для сравнения уточним, что дугогасительной средой в вакуумных высоковольтных выключателях выступает вакуум, он не представляет угрозы для окружающей среды. На самом деле, это обычный стеклянный контейнер и металлические компоненты, то есть вторсырье,
Вакуум имеет свои недостатки и преимущества, которые отличаются от недостатков и преимуществ элегаза. Одним из выдающихся преимуществ вакуумного высоковольтного выключателя является легкость в создании оборудования и небольшое количество компонентов, приблизительно, на 50% меньше, чем в элегазовом высоковольтном выключателе, что приводит к увеличению срока службы, с очень высоким числом рабочих циклов. Кроме того, небольшое количество компонентов и простота конструкции обеспечивают компактный размер и небольшой вес для вакуумного высоковольтного выключателя, и, соответственно, легкое техобслуживание и инспекция.
Еще одним из преимуществ высоковольтного вакуумного выключателя является высокое диэлектрическое сопротивление после нулевого значения тока.
И, наконец, как уже отмечалось ранее, вакуумный выключатель не представляет угрозы для окружающей среды, как в случае с элегазовым выключателем. В случае с вакуумным выключателем нет риска взрыва или пожара, как с масляным высоковольтным выключателем.
Тем не менее, одним из важнейших недостатков является стоимость. Элегазовый высоковольтный выключатель стоит дешевле, что говорит не в пользу конкурентоспособности вакуумного высоковольтного выключателя. Необходимо провести многие исследования с целью снижения затрат на вакуумный высоковольтный выключатель, чтобы они стали экономической альтернативой элегазовой технологии.

Делаем выводы:

Постоянные требования к сети электропередач увеличивают их производительность, надежность и устойчивость. Таким образом, важно продолжать развивать технологию новых выключателей, более надежных, производительных, недорогостоящих, не представляющих угрозу для окружающей среды и людей.

Вакуум – это среда с выдающимися свойствами в отношении объема, количества компонентов, простота, контроль тока короткого замыкания или стабилизация электрической прочности. Сегодня в распределительной сети высокого напряжения будет широко распространено оборудование, не использующее элегаз в качестве рабочего компонента. Тем не менее, необходимо внести изменения в дизайн и материалы, используемые для обеспечения соответствующей работы вакуумного высоковольтного выключателя на высоком напряжении.

Вакуумные выключатели и перенапряжение

В поисках решения для использования наилучшей среды при осуществлении гашения дуги, которая возникает между контактами коммутационных устройств, энергетики в 70-х годах прошлого столетия пришли к парадоксальному выводу — почему бы вообще не избавиться от дуги вместо совершенствования среды для ее гашения? Научные изыскания в этой области быстро перешли в стадию производства. Вакуумные выключатели оказались конструктивно проще и надежнее своих собратьев. И все это при том, что некоторые характеристики вакуумных выключателей значительно превосходят иные типы аппаратов.

Устройство самой простой ВДК представляет собой цилиндр, выполненный из керамики и закрытый металлическими фланцами с торцов. Торцевой неподвижный контакт соединяется с одним их фланцев, а подвижный контакт соединяется посредством сифона с другим фланцем. В момент расхождения контактов проводящей средой для дуги является мост из металла, который испаряется с поверхности контактов. Дуга продолжает гореть до момента первого перехода тока через ноль. В этот момент дуга гаснет. Невысокая плотность паров в вакууме обеспечивает очень высокую скорость диффузии зарядов угасшей дуги. Через 10 мск после преодоление током нуля, между контактами происходит восстановление прочности вакуума, которая доходит 100 МВт/м. Так, аппарат при всей своей кажущейся простоте превосходно работает при больших скоростях восстановления напряжения и с большим успехом применяется при отключении нагрузки емкостного типа.

Первые образцы вакуумных выключателей стали появляться еще в конце 70-х годах прошлого века. Однако некоторые недостатки конструкции сильно замедлили внедрение этих аппаратов. Дело в том что состав, из которого были сделаны контакты вакуумных камер не давал конденсации плазмы паров металла в камере устройства с надлежащей скоростью, и была большая вероятность того, что дуга будет зажжена повторно с присущей эскалацией напряжения при отключении заторможенных или неразвернутых электрических двигателей. После появления современных ограничителей перенапряжений нелинейного типа эта проблема была снята. Но, ситуация, конечно же, породила недоверие к инновационной разработке со стороны техников, являющихся весьма консервативной публикой.

Другой причиной неприятия эксплуатационщиков стали перенапряжения, которые были вызваны большим срезом тока в первых партиях вакуумных аппаратов при отключении нагрузки индукционного типа. В этих моделях выключателей для изготовления контактов использовался вольфрам. Преимущество этого металла в виде тугоплавкости, а также малая истираемость изготовленных из него контактов нивелировались большим контактным сопротивлением и резким спаданием плотности паров металла при приближении тока к нулю. Появлялся срез тока и возникало перенапряжение на индуктивную нагрузку. Ситуация была разрешена с помощью применения сплавов на медной основе, легированной различными добавками, а именно, хромом. В настоящее время кратность перенапряжения, которое вызывается при коммутации вакуумными аппаратами не больше кратности других моделей выключателей.

Читать еще:  Автоматические выключатели hyundai hibd63h

Уже давно решена проблема перенапряжений, но за ней еще очень долго тянулся шлейф, который был вызван и консерватизмом электротехники, и подогреваемый искусственным образом производителями элегазовых устройств, которые начали атаку на рынок примерно в то же самое время, что и «вакуумщики». На протяжении долгого времени производители вакуумных аппаратов были в положении стороны, занявшей оборонительные позиции. Хотя, это время давно уже ушло, и вакуумные аппараты правят на напряжениях 6-10 кВ безраздельно, а в последние несколько лет и сегмент 35 кВ был ими «прибран к рукам». Теперь дискуссия переместилась в сферу генераторных выключателей. Причем сторонники использования элегазовых генераторных систем вновь апеллируют к получению возможности перенапряжений при коммутации цепи генератора вакуумными аппаратами.

Ограничение по мощности отключения для современных ВДК ограничивает применение вакуумных аппаратов на генераторном напряжении. В настоящее время технически вполне оправдано создание выключателя 10 кВ на номинальный ток отключения до 63 кА и номинальный ток 4000-5000 А. Фактически, такой выключатель уже разработан и производится на «Нижнетуринском электроаппаратном заводе», который входит в холдинг «Высоковольтный союз». Этот выключатель прошел испытания по ГОСТ 687-78 и осуществляются его поставки заказчикам в качестве нового генераторного или вводного выключателя, а также, как замену выработавших свой ресурс генераторных выключателей МГГ-10 маломасляного типа.

Одним из главных параметров, который влияет на обеспечение надежности отключения вакуумным выключателем, является первичная скорость восстановления электропрочности в междуконтактном промежутке ВДК после гашения дуги промышленной частоты. Компания Siemens — производитель ВДК, которые применяются в выключателях ВГГ-10, гарантирует не менее 4,8 кВ/мкс. При подобных величинах повторных зажиганий дуги, не будет и эскалации напряжения. Кроме того, не следует забывать и об использовании нелинейных ограничителей. Допустимый уровень в цепи генератора должен определяться испытательным напряжением, которое регулируется по ГОСТ 1516.1 и составляет 4,5 Uф. При этом ОПН ограничивает коэффициент допустимого перенапряжения в пределах 2,5-3,4. Установка у блочного трансформатора конденсаторов производит снижение величины перенапряжений и фактически ограничивает скорость возврата напряжения на контактах ВДК к исходным значениям, что обеспечивает качественное гашение дуги аппаратом.

Получается, нет каких-либо предпосылок «обвинять» вакуумные аппараты в неспособности коммутировать генераторные цепи с должным уровнем надежности. Предложения прежде провести исследования, и лишь затем пустить вакуумные генераторные выключатели в эксплуатацию, представляются также некорректными. Новейшие вакуумные генераторные аппараты не уступают по своим характеристикам элегазовым устройствам, а по ряду характеристик и несколько превосходят их. Кроме того, если стоимость выключателя в соотношении с ценой генератора не играет важной роли, то увеличенный коммутационный ресурс, как под нагрузкой, так и механический, является серьезным аргументом за применение вакуумных выключателей, особенным образом в цепях энергоблоков ГАЭС и ГЭС.

НАПРАВЛЕНИЯ МОДЕРНИЗАЦИИ ВАКУУМНЫХ ВЫКЛЮЧАТЕЛЕЙ СРЕДНЕГО НАПРЯЖЕНИЯ

В настоящее время в энергетических установках, в промышленности и на транспорте в качестве коммутационных устройств благодаря целому ряду своих достоинств по сравнению с другими классами аппаратов преимущественное распространение получили вакуумные выключатели. Одним из положительных качеств вакуумных выключателей является малый ход контактов, что позволяет получать малые значения времени включения и отключения аппарата. Так выключатели на номинальное напряжение 6…10 кВ имеют конечный раствор контактов, лежащий в пределах 4..8 мм, что обеспечивает электрическую прочность промежутка, достаточную для предотвращения межконтактного пробоя после завершения процесса отключения. При больших рабочих напряжениях (35 – 100 кВ) величина гарантированного межкконтактного промежутка возрастает до 16 мм и выше, что в ряде случаев в тяжёлых и аварийных режимах приводит к повторному зажиганию дуги. При этом возрастает величина электрической эрозии контактов и понижается коммутационный ресурс вакуумной дугогасительной камеры и всего аппарата в целом. Это обусловлено двумя основными причинами. Во-первых, недостаточным быстродействием приводов таких аппаратов, а во вторых, ограничением предельно допустимой скорости перемещения подвижного контакта дугогасительной камеры, обусловленного конструкцией камеры и всего выключателя.

В Севастопольском Государственном Университете на кафедре Судового электрооборудования в течение ряда лет ведутся работы по модернизации вакуумных выключателей силовых электрических сетей с целью увеличения их коммутационного ресурса и улучшения качества коммутации. При этом наметились следующие исследовательские и коструктивные направления:

  1. Исследование и разработка новых типов быстродействующих приводов вакуумных выключателей.
  2. Модернизация основных узлов аппарата с целью улучшения их эксаплуатационных характеристик.
  3. Разработка интеллектуальных систем управления силовыми вакуумными выключателями, которые в сочетании с быстродействующими приводами позволили бы резко увеличить ресурс как дугогасительной камеры, так и всего аппарата.

Модернизация приводов электроаппаратов

Приводы электрических аппаратов, в частности вакуумных выключателей, можно условно разделить на 3 класса:

  1. Простые приводы, в которых воздействие на подвижную часть аппарата производится исполнительным механизмом одного типа при выполнении всех операций.
  2. Сложные приводы, в которых одна операция обеспечивается приводным механизмом одного типа, а другая – механизмом другого типа.
  3. Комбинированные приводы, в которых во время выполнения одной операции на подвижные части аппарата одновременно воздействуют два или более механизмов различных типов.

Наиболее благоприятным для улучшения динамических характеристик привода является сочетание индукционно-динамического и электромагнитного механизмов, воздействующих одновременно на шток электроаппарата. Вместо электромагнитного механизма представляется перспективным применение постоянных магнитов в совокупности с компенсационными катушками. Нами разработано несколько модификаций комбинированных приводов, обеспечивающих высокую скорость перемещения подвижной части коммутационного аппарата и, следовательно, малые времена срабатывания выключателей с такими типами приводов [1]. Наиболее характерный вариант комбинированного привода представлен на рисунке 1.

Рисунок. 1. Конструктивный чертеж (А) и внешний вид (Б) комбинированного привода с плоским индукционно-динамическим механизмом.

Комбинированные приводы наиболее пригодны для вакуумных выключателей с ходом контактов более 14 мм и обеспечивают скорость перемещения подвижных контактов максимально допустимую конструкцией дугогасительной камеры.

Модернизация основных узлов вакуумных выключателей

Во всех быстродействующих выключателях слабым звеном является тяговый изолятор, гальванически разделяющий высоковольтную часть аппарата от приводной. Нами предложена конструкция тягового изолятора, в котором изоляционный материал при любом направлении силового воздействия всегда работает на сжатие [2].

Конструкция изолятора представлена на рисунке 2.

Рис. 7.5. Неразрушающийся тяговый изолятор выключателя:

1 – корпус с верхним патрубком; 2 – крышка; 3 – внутреннее

изоляционное вещество; 4 – изоляционная тарелка; 5 – шток.

Кроме изолятора, нами предложены устройства компенсации эрозионного износа контактов вакуумной камеры [3] и антидриблинговое устройство противоотскока контактов при их замыкании [4], принцип действия которых базируется на использовании реомагнитного эффекта.

Интеллектуальные системы управления вакуумными выключателями

Система управления электрическими аппаратами представляет собой совокупность элементов, которая обеспечивает передачу управляющих командных сигналов на включение и отключение аппарата с потенциала земли к элементам, имеющим высокий потенциал.

В лаборатории электрических аппаратов Севастопольского Государственного Университета разработаны системы управления вакуумными выключателями [5], которые обеспечивают широкий спектр операций, осуществляемых такими аппаратами, а именно:

  • Синхронное отключение номинальных и номинально отключаемых токов;
  • Синхронное с нулем напряжение включение нагрузки;
  • Обеспечение автоматического повторного включения в аварийных режимах;
  • Пофазное включение и отключение различных нагрузок;
  • Защитное отключение при поступлении соответствующих сигналов.
Читать еще:  Выключатели автоматические legrand серии lr 1р 10а характеристики

Применение таких систем позволяет увеличить коммутационный ресурс вакуумных выключателей и улучшить качество коммутации ответственых объектов силовых электрических цепей.

Выводы

Модернизация силовых вакуумных выключателей по указанным направлениям позволила достичь следующих результатов:

  1. Повысить быстродействие аппарата как при операции включения, так и выключения силовой сети.
  2. Значительно увеличить коммутационный ресурс выкуумных выключателей.
  3. За счёт изменения конструкции исключить разрыв тягового изолятора.
  4. Для повышения стабильности срабатывания привода компенсировать эрозионный износ контактов дугогасительной камеры.
  5. Уменьшить отскок контактов при выполнении операции включения.
  6. Обеспечить комплексное многооперационное управление выключателем за счёт применения интеллектуальной системы.

Список литературы:

  1. Гилёв А.А. Комбинированные приводы электрических аппаратов, их разновидности и классификация/ А.А. Гилёв, В.С. Миронов// Электротехника и электроэнергетика. — 2009. — Вып. 2. — С. 54-56
  2. Пат. 59154А Украина, МПК 7 Н01В1 7/00. Изолятор / О. О. Гільов (Украина). — №2003032294; Заяв. 17.03.2003; Опубл. 15.08.2003. Бюлл. №8.
  3. Гилёв А.А. Устройства компенсации эрозионного износа контактов выключателей с индукционно-динамическими приводами / А.А. Гилёв // Вестн. ХГПУ. Сб. научн. тр. – Харьков, 2000. – Вып.75. – С. 102-105.
  4. Гилёв А.А. Электромагнитные порошковые тормозные устройства для электроаппаратов с индукционно-динамическими приводами / А.А. Гилёв // НУК. Сб. тр. – Николаев, 2005. – Вып.1(400). – С. 120-123.
  5. Гилёв А.А. Система управления синхронным выключателем повышенной стабильности / А.А. Гилёв, В.Н. Данилов // Вестн. КГПУ. – Кременчуг, 2003. – С. 35-36.[schema type=»book» name=»НАПРАВЛЕНИЯ МОДЕРНИЗАЦИИ ВАКУУМНЫХ ВЫКЛЮЧАТЕЛЕЙ СРЕДНЕГО НАПРЯЖЕНИЯ» author=»Гилёв Александр Александрович» publisher=»БАСАРАНОВИЧ ЕКАТЕРИНА» pubdate=»2017-03-27″ edition=»ЕВРАЗИЙСКИЙ СОЮЗ УЧЕНЫХ_30.04.2015_4(13)» ebook=»yes» ]

Устройство вакуумного выключателя

Ритмично сменяющиеся отключения и подключения отдельно взятой аппаратуры обозначают, как явление коммутации. Использование специальных приспособлений позволяет остановить или возобновить подачу тока в эксплуатационном режиме. Устройство вакуумного выключателя настолько практично, что способствовало повсеместной замене электромагнитных и масляных образцов на такие элементы.

Применение данных выключателей оправдало себя и для форсмажорных ситуаций, вызванных коротким замыканием. В таком случае выполняется очень важная функция – исчезновение образующейся между контактами дуги.

Главные плюсы и минусы

Сравнение с аналогами масляного и электромагнитного вида позволяет обнаружить много преимуществ:

  • все исследования наглядно доказали, что вакуумные модели наиболее простые и надежные при гашении дуги электрического происхождения. Технические особенности предполагают несложное создание образцов для напряжения порядка 6-10 кВт;
  • обслуживание и ремонт гораздо легче, чем у других выключателей;
  • дистанция беспрепятственного передвижения молекул и электронов в дугогасительной камере достигает нескольких сотен метров. Имеющиеся в вакууме промежутки не способствуют образованию частиц, несущих заряд, что практически сводит к нулю ударную ионизацию. Появление подобных частиц возможно исключительно на поверхностях контактов;
  • относительная дороговизна в сравнении с устройствами маломасляного типа составляет всего 5-15%. А электромагнитные модели и вовсе не могут сравниться по этому параметру с вакуумными образцами;
  • отсутствие потребности в большом расстоянии между рабочими контактами и уникальная прочность вакуума – причины компактных размеров камер. А это в свою очередь предполагает и незначительный вес;
  • основные факторы отличных показателей безопасности – отсутствие потенциальной угрозы утечки масла, бесшумность и незначительные нагрузки динамического характера;
  • снижение эксплуатационных расходов – следствие автономного режима работы в среде, не требующей пополнения;
  • несколько десятков тысяч допускаемых циклов включения/отключения – гарантия значительного механического ресурса. В сотни раз измеряется количество срабатываний для токов короткого замыкания;
  • малый ход контактов, обусловленный минимальным расстоянием между ними, является причиной идеального быстродействия.

Недостатков, причем относительных, гораздо меньше:

  • при отключении индуктивных токов маленькой мощности высока вероятность коммутационного перенапряжения;
  • необходимость в контактных материалах усложняет процедуру изготовления. Для работы с вакуумом понадобится создание специальных условий;
  • на итоговую себестоимость очень влияет потребность больших инвестиций в производство.

Особенности конструкции

Имеется пара основных элементов – контакты неподвижного и подвижного исполнения. Пофазно смонтированные электромагнитные приводы располагаются на каждом из трех полюсов. Данные элементы монтируются на общем основании.

Основой соединения служит вал, который также выполняет функции защиты фаз неполного типа и синхронизации. Этот узел позволяет выполнять механическую блокировку систем распределения и управления параметрами индикации расположения контактных элементов.

Рассмотрим выключатель «Таврида Электрик» (серия BB/TEL).

Цифры на картинке обозначают:

  1. Вакуумная камера с функцией дугогашения.
  2. Основание.
  3. Крышка.
  4. Вал синхронизации.
  5. Дополнительные контакты.
  6. Блокировочная тяга.
  7. Привод.
  8. Узел блокировочный торцевой.

Полюс со значениями номинального тока 2 тысячи ампер детально показан на нижнем эскизе:

  1. Вывод в верхней части.
  2. Дугогасящая камера, вмонтированная в полые изоляторы. Подвижные контакты за счет изоляционных тяг скреплены жестким соединением с приводами.
  3. Дополнительные контакты.
  4. Кулак.
  5. Блокировочная тяга.
  6. Вал синхронизации.
  7. Электромагнитный вал, оснащенный защелкой на магните.
  8. Пружина для прижатия контактов.
  9. Пружина отключения контактов.
  10. Приводной якорь.
  11. Кольцевой магнит.
  12. Приводная катушка.
  13. Плоский привод.
  14. Тяговый изолятор.
  15. Опорное изолирующее устройство.
  16. Нижний вывод.

Положение «выкл.» и «вкл.» – два варианта расположения магнитного привода. Для каждого способа не нужны механические защелки крепления якоря. Кольцевой магнит в отключенном состоянии и пружина с большой упругостью при включенном – элементы надежной фиксации. А сам процесс обеспечивает передача на обмоточную катушку привода управляющих импульсов разной полярности.

Как происходит работа

Ток коммутируемого типа способствует появлению электроразряда в момент размыкания расположенных в вакууме контактов. Благодаря испарением металла с поверхности контактных соединений образуется вакуумная дуга. Проводящая плазма – продукт, который проявляется при скоплении ионизированных паров. В этой среде происходит протекания тока в промежутках между контактами до самого ноля.

После прохождения нулевой точки буквально за 8-10 микросекунд пары металла оседают в виде конденсата на поверхности контактных элементов и прочих узлах камеры, а сама дуга гаснет. В результате восстанавливается напряжение, приложенное к контактам.

Бывают ситуации с сохранением на поверхности зон с повышенной температурой. Это может спровоцировать образование заряженных частиц, способных пробить вакуумный промежуток. Свойства управления дугой в модификациях выключателей BB/TEL помогут решить эту проблему методом направления на поверхность дуги продольного тока, параллельной току.

Популярные модели

ВВЭ-М-10-20

Монтаж рекомендуется в установках К-104, К-49, К-59 и КМ-1Ф. Оригинальная схема управления позволяет выполнить такие задачи:

  • четко отлаженную процедуру быстрого отключения и включения;
  • применение коммутированных контактов для взаимодействия с внешними цепочками управления в КРУ;
  • ручной вариант отключения.

Ремонт стандартного вида при выполнении эксплуатационных требований происходит раз в 8-10 лет.

ВВЭ-М-10-40

Устанавливается для КРУЭ-6П, 2КВЭ-6М, КРУП-6П. Область применения – метрополитены и шахты, электрогенерирующие станции мобильного типа и подстанции, экскаваторная техника с большой мощностью, предприятия нефтегазовой отрасли, системы орошения.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector