Oncool.ru

Строй журнал
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Электронный выключатель постоянного тока

Автоматические выключатели

В данной статье мы рассмотрим следующие вопросы:

  1. Что такое автоматический выключатель?
  2. Устройство и принцип работы автоматического выключателя.
  3. Маркировка и характеристики автоматических выключателей.
  4. Выбор автоматического выключателя.

1. Что такое автоматический выключатель?

Автоматический выключатель (автомат) — это коммутационный аппарат предназначенный для защиты электрической сети от сверхтоков, т.е. от коротких замыканий и перегрузок.

Определение «коммутационный» означает, что данный аппарат может включать и отключать электрические цепи, другими словами производить их коммутацию.

Автоматические выключатели бывают с электромагнитным расцепителем защищающим электрическую цепь от короткого замыкания и комбинированным расцепителем — когда дополнительно с электромагнитным расцепителем применяется тепловой расцепитель защищающий цепь от перегрузки.

Примечание: В соответствии с требованиями ПУЭ бытовые электросети должны быть защищены как от коротких замыканий, так и от перегрузки, поэтому для защиты домашней электропроводки следует применять автоматы именно с комбинированным расцепителем.

Автоматические выключатели делятся на однополюсные (применяются в однофазных сетях), двухполюсные (применяются в однофазных и двухфазных сетях) и трехполюсные (применяются в трехфазных сетях), так же бывают четырехполюсные автоматические выключатели (могут применяться в трехфазных сетях с системой заземления TN-S).

Устройство и принцип работы автоматического выключателя.

На рисунке ниже представлено устройство автоматического выключателя с комбинированным расцепителем, т.е. имеющий и электромагнитный и тепловой расцепитель.

1,2 — соответственно нижняя и верхняя винтовые клеммы для подключения провода

3 — подвижный контакт; 4 — дугогасительная камера; 5 — гибкий проводник (применяется для соединения подвижных частей автоматического выключателя); 6 — катушка электромагнитного расцепителя; 7 — сердечник электромагнитного расцепителя; 8 — тепловой расцепитель (биметалли́ческая пласти́на); 9 — механизм расцепителя; 10 — рукоятка управления; 11 — фиксатор (для крепления автомата на DIN-рейке).

Синими стрелками на рисунке показано направление протекания тока через автоматический выключатель.

Основными элементами автоматического выключателя являются электромагнитный и тепловой расцепители:

Электромагнитный расцепитель обеспечивает защиту электрической цепи от токов короткого замыкания. Он представляет из себя катушку (6) с находящимся в ее центре сердечником (7) который установлен на специальной пружине, ток в нормальном режиме работы проходя по катушке согласно закону электромагнитной индукции создает электромагнитное поле которое притягивает сердечник внутрь катушки, однако силы этого электромагнитного поля не хватает что бы преодолеть сопротивление пружины на которой установлен сердечник.

При коротком замыкании ток в электрической цепи мгновенно возрастает до величины в несколько раз превышающей номинальный ток автоматического выключателя, этот ток короткого замыкания проходя по катушке электромагнитного расцепителя увеличивает электромагнитное поле воздействующее на сердечник до такой величины, что его силы втягивания хватает на то что бы преодолеть сопротивление пружины, перемещаясь внутрь катушки сердечник размыкает подвижный контакт автоматического выключателя обесточивая цепь:

При коротком замыкании (т.е. при мгновенном возрастании тока в несколько раз) электромагнитный расцепитель отключает электрическую цепь за доли секунды.

Тепловой расцепитель обеспечивает защиту электрической цепи от токов перегрузки. Перегрузка может возникнуть при включении в сеть электрооборудования общей мощностью превышающей допустимую нагрузку данной сети, что в свою очередь может привести к перегреву проводов разрушению изоляции электропроводки и выходу ее из строя.

Тепловой расцепитель представляет из себя биметаллическую пластину (8). Биметаллическая пластина — эта пластина спаянная из двух пластин различных металлов (металл «А» и металл «В» на рисунке ниже) имеющих разный коэффициент расширения при нагреве.

При прохождении по биметаллической пластине тока превышающего номинальный ток автоматического выключателя пластина начинает нагреваться, при этом металл «B» имеет больший коэффициент расширения при нагреве, т.е. при нагреве он расширяется быстрее чем металл «A», что приводит к искривлению биметаллической пластины, искривляясь она воздействует на механизм расцепителя (9), который размыкает подвижный контакт (3).

Время срабатывания теплового расцепителя зависит от величины превышения тока электросети номинального тока автомата, чем больше это превышение тем быстрее сработает расцепитель.

Как правило тепловой расцепитель срабатывает при токах в 1,13-1,45 раз превышающих номинальный ток автоматического выключателя, при этом при токе превышающем номинальный в 1,45 раза тепловой расцепитель отключит автомат через 45мин — 1 час.

Время срабатывания автоматических выключателей определяется по их время-токовым характеристикам (ВТХ)

При любом отключении автоматического выключателя под нагрузкой на подвижном контакте (3) образуется электрическая дуга которая оказывает разрушающее воздействие на сам контакт, причем чем выше отключаемый ток, тем мощнее электрическая дуга и тем большее ее разрушающее возде йствие. Для сведения к минимуму ущерба от электрической дуги в автоматическом выключателе она направляется в дугогасительную камеру (4), которая состоит из отдельных, параллельно установленных пластин, попадая между этих пластин электрическая дуга дробится и затухает.

3. Маркировка и характеристики автоматических выключателей.

ВА47-29 — тип и серия автоматического выключателя

Номинальный ток — максимальный ток электрической сети при котором автоматический выключатель способен длительно работать без аварийного отключения цепи.

Стандартные значения номинальных токов автоматических выключателей: 1; 2; 3; 4; 5; 6; 8; 10; 13; 16; 20; 25; 32; 35; 40; 50; 63; 80; 100; 125; 160; 250; 400; 630; 1000; 1600; 2500; 4000; 6300, Ампер.

Номинальное напряжение — максимальное напряжение сети на которое рассчитан автоматический выключатель.

ПКС — предельная отключающая способность автоматического выключателя. Данная цифра показывает максимальный ток короткого замыкания который способен отключить данный автоматический выключатель сохранив при этом свою работоспособность.

В нашем случае ПКС указан 4500 А (Ампер), это значит что при токе короткого замыкания (к.з.) меньшем, либо равном 4500 А автоматический выключатель способен разомкнуть электрическую и остаться в исправном состоянии, в случае если ток к.з. превысит данную цифру возникает возможность оплавления подвижных контактов автомата и их привариванию друг к другу.

Характеристика срабатывания — определяет диапазон срабатывания электромагнитного расцепителя автоматического выключателя.

Например в нашем случае представлен автомат с характеристикой «C» его диапазон срабатывания от 5·Iн до 10·Iн включительно. (Iн— номинальный ток автомата), т.е. от 5*32=160А до 10*32+320, это значит что наш автомат обеспечит мгновенное отключение цепи уже при токах 160 — 320 А.

Характеристика срабатывания является одним из параметров время-токовых характеристик автоматических выключателей подробнее о которых читайте в статье: «Время-токовые характеристики (ВТХ) автоматических выключателей»

Примечание:

  • Стандартными характеристиками срабатывания (предусмотренными ГОСТ Р 50345-2010) являются характеристики «B», «C» и «D»;
  • Область применения указана в таблице согласно установившейся практике, однако она может быть иной в зависимости от индивидуальных параметров конкретных электрических сетей.

4. Выбор автоматического выключателя

Примечание: Полную методику расчета и выбора автоматических выключателей читайте в статье: «Расчет электрической сети и выбор аппаратов защиты»

Выбор автомата осуществляется по следующим критериям:

— По количеству полюсов: одно- и двухполюсные применяются для однофазной сети, трех- и четырехполюсные — в трехфазной сети.

— По номинальному напряжению: Номинальное напряжение автоматического выключателя должно быть больше либо равно номинальному напряжению защищаемой им цепи:

Читать еще:  Как подключить наждак через выключатель

Uном. АВ Uном. сети

— По номинальному току: Определить необходимый номинальный ток автоматического выключателя можно одним из четырех следующих способов:

  1. Рассчитать самостоятельно по методике приведенной в статье: «Расчет электрической сети и выбор аппаратов защиты«

— Выбираем характеристику срабатывания: зачастую характеристику срабатывания автоматического выключателя выбирают исходя из назначения защищаемой им сети (согласно таблице характеристик срабатывания выше) однако автомат выбранный таким образом может не обеспечить своевременное отключение цепи при коротком замыкании, характеристику срабатывания необходимо определять по методике приведенной здесь.

Была ли Вам полезна данная статья? Или может быть у Вас остались вопросы? Пишите в комментариях!

Не нашли на сайте статьи на интересующую Вас тему касающуюся электрики? Напишите нам здесь. Мы обязательно Вам ответим.

Твердотельные выключатели постоянного тока средних напряжений

Главная страница » Твердотельные выключатели постоянного тока средних напряжений

Как удовлетворить большие потребности будущих силовых электрических судовых установок, радаров, вооружений, учитывая размеры и вес требуемых стандартных генераторов переменного тока и трансформаторов? Решением задачи видится применение систем — эффективные компактные твердотельные выключатели среднего напряжения (10-20 кВ) постоянного тока. Рассмотрим архитектуру устройства оглядкой на информацию «Diversified Technologies, Inc».

Первопричины внимания к твердотельным выключателям

Прибор класса 10 — 20 кВ видится технологичным прорывом в области цепей питания напряжением средней величины. Устройство обеспечивает чрезвычайно быструю блокировку повреждения, низкие токовые пики, гибкую программируемую координацию, механическую изоляцию. Это ключ надежной и безопасной эксплуатации электрических систем.

Распределение мощности по линиям СНПТ активно исследуется разработчиками энергосистем по нескольким причинам. Во-первых, военно-морские и гражданские суда приводятся в действие:

  • силовыми,
  • радиолокационными,
  • оружейными системами,

требующими питания постоянным напряжением. При этом совокупные габариты и вес всех рабочих стандартных генераторов переменного тока и трансформаторов явно ограничены.

Во-вторых, ожидается, что электропитание в перспективе обеспечат преобразователи энергии, способные интегрировать ряд альтернативных источников и систем хранения, включая:

  • энергию ветра;
  • солнечную энергию;
  • аккумуляторы и маховики, с диапазоном напряжений, частот и уровней мощности.

Каналы постоянного тока идеально подходят для такого рода интеграции, но эти каналы нельзя безопасно развернуть без эффективных твердотельных автоматических выключателей.

В конечном счёте, гибкость систем распределения электроэнергии постоянного тока обещает расширить возможности коммерческих и военно-морских энергетических систем.

Твердотельные автоматические выключатели рассматриваются ключевой технологией для распределения питания. Эти устройства способны блокировать систему при полной нагрузке в микросекундных временных масштабах. В результате токовая составляющая короткого замыкания лишь в несколько раз превышают номинальный параметр нагрузки.

Прежде использование питания постоянным напряжением отмечалось сложностями по причине отсутствия подходящих высоковольтных автоматических выключателей постоянного тока. Теперь требованиям электроустановок доступно соответствие, если использовать быстродействующие твердотельные высоковольтные выключатели.

Концептуальная конструкция прибора с двумя прерывателями: 1, 7 – прерыватели IGBT на 8 МВт (10 кВ); 2 – драйвер затвора IGBT; 3 – резервуар; 4 – деионизированный водяной насос; 5 – реечный привод; 6 – разъёмы шины

Твердотельные выключатели — высоковольтные переключатели

Высоковольтные твердотельные переключатели из серии разработок «Diversified Technologies, Inc» представляют собой последовательные массивы полупроводниковых устройств, работающих как один переключатель.

Концепция достаточно проста, но выполнение требует тщательной синхронизации элементов управления затвором и отведения паразитной энергии, чтобы обеспечивались надежная работа и продолжительный срок службы коммутатора.

Такие массивы могут выстраиваться из нескольких типов полупроводниковых приборов. Биполярный транзистор с изолированным затвором (IGBT — Insulated Gate Bipolar Transistor) часто рассматривается предпочтительным выбором по причинам:

  • широкой коммерческой доступности;
  • механической прочности;
  • скорости действия;
  • низкого энергопотребления для работы привода затвора.

Однако для практических применений с очень высокой мощностью (> 10 МВт), вместо транзистора желательно использовать тиристор с интегрированным затвором (IGCT — Integrated Gate Commutated Thyristor). Причины — низкие потери на проводимость.

На будущее эту же технологию высокого напряжения планируется использовать с устройствами на SiC (карборунд) или GaN (нитрид галлия) по мере доступности элементов.

Такое применение обеспечивает большее снижение потерь проводимости и более широкий диапазон рабочих температур, устраняя необходимость активного охлаждения.

Твердотельные выключатели: мгновенная блокировка неисправности

Полупроводниковое высоковольтное переключение обеспечивает существенный прогресс в работе выключателя, повышая надежность и безопасность энергетической системы.

Поскольку твердотельный коммутатор способен прерывать полный ток в микросекундных временных интервалах, локальная защита от неисправностей полностью обеспечена. Реализуется защита через систему управления непосредственно выключателя, без необходимости внешнего обнаружения неисправности.

Быстродействующие полупроводниковые твердотельные размыкающие выключатели представлены технологией, позволяющей распределять мощность постоянного тока, поскольку эти устройства прерывают ток без образования дуги.

Следовательно, не требуется изменение напряжения. Различия между твердотельным выключателем и механическим выключателем отмечаются сравнением соответствующих графиков времени / тока.

Горизонтальные асимптоты кривых обратного времени графиков наглядно показывают — механические переключатели не способны размыкаться менее чем за несколько миллисекунд. То есть ток при коротком замыкании возрастет до крайне высоких значений (10 кА для системы 10 кВ с общей индуктивностью системы 1 мГн).

Между тем повышение тока для полупроводникового твердотельного переключателя на эту же нагрузку составит всего 10А при времени размыкания 1 мкс. Малый ток короткого замыкания и быстрое время размыкания для твердотельного переключателя не позволят достичь разрушительных уровней энергии.

Разработка схем твердотельных выключателей

Упрощенная структурная схема твердотельного автоматического выключателя показана на картинке ниже. Твердотельный автоматический выключатель содержит последовательный ряд твердотельных компонентов, безопасно обрабатывающих напряжения шины постоянного тока.

Быстро скоординированное контроллером обратное время обеспечивает сигнал возбуждения затвора для переключения твердотельного выключателя, синхронное открывание / закрывание.

Быстродействующий контроллер обратного времени получает команды либо от других твердотельных автоматических выключателей сети, либо от быстродействующих датчиков обнаружения токов локальных повреждений.

Структурная схема: 1 – медленный коммутатор системы; 2 – быстродействующий контроллер обратного времени; 3, 4 – модули защиты; 5 – сенсор (датчик) тока; А – другие твердотельные выключатели; B – фаза линии; C – нейтраль линии; D – цепи системы; E – контроль тока; F – серия разрядников

Контроллер обратного времени обеспечивает управление временем обратного отключения для состояний максимального тока и быстрое мгновенное отключение при достижении предела максимального тока.

Эти рабочие параметры допустимо регулировать для каждого твердотельного выключателя, в зависимости от положения в сети, обеспечивая упорядоченную, последовательную реакцию на неисправные состояния.

Функции твердотельного прерывателя (выключателя)

Полупроводниковый твердотельный прерыватель обеспечивает основную функциональность всей сборки автоматического выключателя: быструю защиту от замыканий и надёжную изоляцию.

Полная сборка автоматического твердотельного выключателя также должна обеспечивать безопасное отключение прерывателя от электросети, когда требуется техническое обслуживание или сервис.

Выбранная концепция конструкции для прерывателя среднего напряжения постоянного тока представляет собой устройство нагрузки на основе IGBT компонента, который выдерживает ток до 800А при напряжении 10 кВ.

Используются последовательные комбинации силовых устройств управления напряжением шины СНПТ. Параллельные массивы этих сборок используются для удовлетворения общих требований к току нагрузки.

Читать еще:  Концевой выключатель 440в 10а

Предварительная схема твердотельного прерывателя (выключателя) цепи уровня нагрузки 8 МВт показана на картинке ниже. Твердотельный прерыватель содержит шесть элементов IGBT 4500В (CM900HB-66H), соединенных последовательно.

Прерыватель твердотельный мощностью 8 МВт имеет размеры ширины-высоты-глубины: 58х22х27 см и весит около 27 кг. Элементы IGBT установлены на алюминиевых плитах с водяным охлаждением, которые, в свою очередь, установлены на механически изолированной раме.

Концепция на схему твердотельного прерывателя IGBT 10 кВ, 8 МВт (800 А). Элементы IGBT устанавливаются на охлаждаемые водой пластины. Неметаллические водяные линии между соседними пластинами рассчитаны выдерживать полное напряжение выключателя

Неметаллические водопроводы достаточно резистивные, чтобы ограничивать утечку тока по линиям. Поэтому требуется небольшая замкнутая система охлаждения и долговечный ионообменный картридж для поддержания удельного сопротивления охлаждающей воды.

Твердотельные выключатели + топология распределения тока

Как при традиционном распределении переменного тока, автоматический твердотельный выключатель постоянного тока допустимо использовать в простой системе радиального распределения. Электроэнергия подключается к центральной линии распределительного устройства, а затем распределяется по различным нагрузкам.

В схеме распределения постоянного тока каждая нагрузка изолируется от центральной шины диодами, так как твердотельные автоматические выключатели требуют однонаправленной проводимости.

Например, предполагается, что корабли ВМФ следующего поколения станут использовать комбинацию радиального и кольцевого распределения электрических шин. Порты и шины правого борта предполагают радиальное распределение.

Однако связь с носовой частью и кормой корабля предполагается осуществлять при помощи автоматических твердотельных выключателей. Исполнение твердотельных автоматических выключателей рассчитано на проводимость в обоих направлениях.

Заключительный штрих

Наличие высоковольтных выключателей обеспечивает возможность передачи распределения энергии корабельных систем на бортовые энергосистемы СНПТ. При этом отмечаются существенные преимущества.

Способность систем СНПТ прерывать мощность полной нагрузки в микросекундных временных интервалах обеспечивает явный прогресс в работе автоматического выключателя. Повышается надёжность и безопасность энергосистемы.

Технология также позволяет использовать высокочастотные высоковольтные импульсные преобразователи мощности, которые отличаются прочностью, эффективностью и компактностью.

При помощи информации: DivTecs

КРАТКИЙ БРИФИНГ

Zetsila — публикации материалов, интересных и полезных для социума. Новости технологий, исследований, экспериментов мирового масштаба. Социальная мультитематическая информация — СМИ .

Переключатели электрические. Виды и устройство. Работа и применение

Переключатели в электротехнике служат для отключения и включения электрических цепей низкого напряжения поочередно. Например, проходные переключатели предназначены для удобства управления освещением в различных комнатах, лестницах, коридорах. Такие переключатели электрические монтируют между этажами, возле дверей помещений с несколькими входами.

Из дома удобно управлять освещением гаража и других помещений, а также фонарями на приусадебном участке. Переключатели позволяют управлять функционированием освещения, находясь при этом в другом месте, что создает определенные удобства и комфорт, а также экономится электроэнергия.

Простой выключатель имеет клавишу на две позиции и одну пару контактов, к которым подключены проводники. Переключатель, в отличие от выключателя, имеет три или более контактов. Один контакт общий, остальные являются перекидными. К каждому из этих контактов подключены провода. Чтобы управлять освещением из других мест, необходим переключатель на несколько контактов. Переключатели электрические позволяют управлять работой любых электрических устройств, а не только освещением.

Принцип действия

Переключатели электрические работают следующим образом. Смысл их работы заключается в перекидывании основного контакта с одной цепи на другую. Чаще всего на обратной стороне корпуса переключателя изображена схема подключений проводов.

Один контакт общий (1), другие два контакта – перекидные (2 и 3). Используя два таких переключателя, и расположив их в разных местах, можно выполнить наиболее популярную и простую схему управления освещением из двух разных мест.

Совпадающие по обозначениям клеммы 2 и 3 с переключателями ПВ-1 и ПВ-2 соединены проводниками между собой. Вход 1 от ПВ-1 подключен к фазе, а ПВ-2 подключен к арматуре освещения. Другой конец светильника соединен с нулевым проводником сети.

Проверка работоспособности схемы осуществляется включением переключателя. Сначала подается напряжение, при этом лампа поочередно загорается и гаснет от отдельного действия любого из переключателей. При размыкании цепи одного из переключателей, в работу включается другая линия цепи.

Виды и конструктивные особенности

Для правильного выбора переключателя необходимо определить тип движения управления рукояткой, решаемыми задачами, схемой соединений, свойствами соединяемых цепей.

Существуют переключатели электрические, делящиеся на виды по типу движения управления рукояткой:
  • Угловые.
  • Нажимные.
  • Поворотные.
Угловые переключатели типа тумблера изготавливаются по двум схемам:
  • С врубными контактами (рисунок «а»).
  • Коромыслового типа (рисунок «б»).

Оба типа переключателей имеют две устойчивые позиции рукоятки. При передвижении рукоятки (1) пружина (2) сжимается, концентрируя энергию сжатия. При нахождении в позиции, изображенной пунктирной линией, устройство находится в неустойчивом равновесии.

Небольшой сдвиг рукоятки и пружина резко перемещает подвижный контакт (3) в устойчивое положение. В результате подвижный контакт скачкообразно подключается к неподвижному контакту (6).

По схеме подключения тумблерные переключатели с врубными контактами делятся на:
  • Однополюсные (рисунок «а»).
  • Однополюсные сдвоенные (рисунок «б»).
  • Двухполюсные на две позиции (рисунок «в, г»).

Рукоятки этих переключателей могут находиться в двух фиксированных позициях. Схемы коммутации могут быть самыми разными. Тумблеры используются для переключения схем переменного и постоянного тока. Они способны выдерживать нагрузку в цепи силой тока до 6 ампер. Сопротивление их контактов очень мало (0,02 Ом).

Надежность работы тумблеров можно выразить возможным числом переключений, которое достигает 10000 раз.

Микротумблеры

Такие тумблеры небольших размеров выигрывают в габаритах и массе, по сравнению с другими видами тумблеров.

Нажимные переключатели электрические

Переключатели электрические в виде кнопок классифицируются по типу управления:
  • Обычные. Цепь разомкнута или замкнута только при нажатом положении.
  • Залипающие. Цепь замыкается при отсутствии усилия нажатия. Для размыкания цепи необходимо снова произвести нажатие.
  • Сдвоенные. Цепь замыкается при нажатии одной кнопки, размыкается с помощью другой кнопки. Устройство кнопки производят на основе тумблерных переключателей, микровыключателей. Кроме основных, существуют оригинальные устройства.
Схемы подключения обычных и залипающих кнопок делят на:
  • Однополюсные включения (рисунок «а»).
  • Выключения (рисунок «б»).
  • Включения-выключения (рисунок «в»).
  • Двухполюсные включения (рисунок «г»).

Нажимные переключатели выполняют с защитой от пыли и влаги, и без защиты.

Поворотные переключатели
Галетные переключатели электрические

Среди электрических переключателей поворотного вида наибольшей популярностью пользуются галетные переключатели. С их помощью можно одновременно подключать сразу несколько электрических цепей, связанных между собой.

Устройство галетного переключателя выполнено таким образом, что металлическое кольцо (2) с выступом жестко связано с осью (1) переключателя. Общее число контактов, располагающихся через 30 градусов – 12 штук. При повороте оси на 330 градусов выполняется коммутация общего вывода с 11-ю различными цепями, которые подключены к контактам (4).

Существуют некоторые модификации галетных переключателей. Например, кольцо может выполняться разрезанным. На каждой части делается выступ. При вращении оси два общих вывода синхронно соединяются с 5-ю различными цепями.

В галетных поворотных переключателях применяются врубные ножевые контакты, которые изготавливают из сплавов меди (бронза, латунь), с покрытием слоем серебра. Ножевой контакт дает возможность снизить влияние погрешности изготовления сборки и деталей, увеличить его вибрационную стойкость и надежность.

Читать еще:  Автоматический выключатель механическая износостойкость 25000

Галетные переключатели способны переключать электрические цепи силой тока до 3 ампер, напряжением до 350 вольт постоянного тока. Для переменного тока допустимое напряжение составляет не более 300 вольт. Надежность таких переключателей составляет до 10000 переключений.

Установка переключателей производится путем пайки, кроме тумблерных видов переключателей, которые соединяются с цепью винтами. Главным требованием механической установки переключателей является требование: не изменять положение корпуса и внутренней части переключателя при приложении усилия управления. В связи с этим при применении переключателя необходимо использовать только те методы крепления, которые соответствуют техническим условиям определенного вида переключателя.

Схема перекрестного переключателя освещения

Для монтажа переключателей в трех местах необходимо вспомогательное устройство с перекрестной схемой коммутации. Такое устройство состоит из двух 1-клавишных переключателей с внутренними перемычками, выполненными в одном корпусе.

Перекрестный переключатель монтируется между 2-мя обычными. Он используется только совместно с ними, и отличается наличием 4-х клемм. Чтобы управлять освещением из 4-х мест, необходимо добавить в схему дополнительно такое же устройство. Перекрестный переключатель подключается к перекидным контактам выключателей таким образом, чтобы образовалась рабочая цепь питания освещения.

Сложные группы контактов нуждаются в большом числе проводников и подключений. Оптимальным вариантом будет сборка нескольких простых схем, вместо одной сложной, так как они будут работать более надежно, и удобнее в эксплуатации. Все основные соединения необходимо производить в распредкоробках. Выполнять скрутки проводов не допускается.

Выключатели автоматические постоянного тока в Перми

  • Автоматические электровыключатели
  • Дифференциальные автоматы

Автоматический выключатель Schneider Electric LV431630

Автоматический выключатель постоянного тока 1П 40А В

Автоматический выключатель КЭАЗ ВА21-29-220010-440DC 2P 4kA

Выключатель автоматический постоянного тока, стационарный E2N 1600 PR122/DC In=1600A 3p F VR

Автоматический выключатель ABB Basic M 2P (C) 4,5kA

Автоматический выключатель IEK ВА 47-29 4P (C) 4,5kA

Автоматический выключатель Schneider Electric Acti 9 C60H 2P (C) 500В DC

Автоматический выключатель IEK ВА 47-29 1P (C) 4,5kA

Автоматический выключатель Schneider Electric Easy 9 2P (C) 4,5kA

Дифференциальный автомат ABB DSH941R 2П 30 мА C

Автоматический выключатель TDM ЕLECTRIC ПАР 1P 4.5 kA

Автоматический выключатель Legrand RX3 1P (C) 4,5kA

KEAZ Выключатель автоматический модульный OptiDin BM63-3C25-УХЛ3 (ВМ63), 4 шт

Выключатель автоматический постоянного тока, стационарный E3H 2500 PR122/DC In=2500A 3p F VR

Legrand (Легранд) Автоматический выключатель постоянного тока 800 В 20А 414429

Автоматический выключатель ABB Basic M 1P (C) 4,5kA

C32H-DC 2P C3 Автоматический выключатель постоянного тока 2п 3А, х-ка C, Icu=10kA SCHNEIDER ELECTRIC 20543

Автоматический выключатель ABB S201 1P (B) 6kA

Автоматический выключатель КЭАЗ OptiDin BM63-DC 2P (L) 6kA

Legrand (Легранд) Автоматический выключатель постоянного тока 800 В 10А 414426

Автоматический выключатель IEK ВА 47-29 3P (C) 4,5kA

KEAZ Выключатель автоматический ВА57-39-340010-400А-4000-690AC-УХЛ3-КЭАЗ

Автомат защитного отключения Marine Quality 20004 PE7404 4 А

Автоматический выключатель IEK ВА 47-29 2P (C) 4,5kA

Автоматический выключатель IEK ВА 47-29 3P (B) 4,5kA

Автоматический выключатель Schneider Electric ВА63 1P (C) 4.5kA

Выключатель автоматический EKF Basic 1P, 32 А. В 4,5 кА.

KEAZ Выключатель автоматический АЕ2046М-100-10А-12Iн-400AC-У3-КЭАЗ, 4 шт

Автоматический выключатель Schneider Electric ВА63 3P (C) 4.5kA

Автоматический выключатель IEK ВА 47-100 1P (D) 10kA

Дифференциальный автомат ABB BMR415 2П 30 мА C

Автоматический выключатель DEKraft ВА-105 4P (C) 10kA

Legrand (Легранд) Автоматический выключатель постоянного тока 1000 В 20А 414449

Автоматический выключатель Legrand TX3 1P (C) 6kA

Legrand (Легранд) Автоматический выключатель постоянного тока 800 В 8А 414425

Выключатель автоматический EKF Basic 1P, 16 А. В 4,5 кА.

Дифференциальный автомат Legrand RX3 2П 30 мА C

Автоматический выключатель КЭАЗ ВА21-29-341810-НР24AC/DC-АЭС 3P 6kA

1SDA0 59056 R1 Выключатель-разъединитель выкатной до 1000В постоянного тока E2N/E/MS 1250 4p 1000V DC W MP ABB, 1SDA059056R1

Для чего нужна серая кнопка с буквой «Т» на устройстве защитного отключения?

Здравствуй, дорогой читатель канала Свет!

У многих жильцов новостроек и новых частных домов стоят такие выключатели, как на фотографии ниже.

В таких блоках часто располагается электрический счётчик, а также главные выключатели, которые отключают подачу тока в определённых точках. Ещё там находиться УЗО.

На этом самом устройстве защитного отключения располагается серая кнопка с буковой «Т». Для чего нужна эта кнопка?

УЗО и кнопка на нем

Для начала было бы неплохо разобраться в принципах работы УЗО. Тогда станет понятно для чего нужна кнопка и как ее использовать.

Как работает УЗО

Устройство защитного отключения как это ни странно, отключает цепь питания тогда, когда сила тока отличается в проводах фазы и нуля отличается более чем на 0,03 ампера.

УЗО в таком случае срабатывает и защищает от поражения электрическим током и пожара.

Причиной срабатывания устройства может быть нарушение изоляции проводов в каком-либо электроустройстве дома.

В этот момент идёт утечка тока, потому-что провод не изолирован.

Такие утечки могут привести к пожару, так-как будет происходить сильный нагрев или воспламенение элементов находящихся рядом с оголенным проводом.

Поэтому, в таких ситуациях происходит отключение питания в том узле, где обнаруживается утечка.

Это помогает избежать пожара или поражения током, если вдруг электроприбор не заземлён имея он металлический корпус. Он просто не будет включаться от сети до тех пор пока не будет произведен ремонт проводки и устранена утечка тока.

Кнопка с буквой «Т»

Данная кнопка называется «Тест». Она нужна для того, чтобы создать такую ситуацию описанную выше искусственно. При нажатии кнопки УЗО определяет как будто произошла утечка и отключает питание.

Недавно знакомый электрик устанавливал светильник и сказал, что желательно производить такую процедуру не реже чем раз в месяц. Чтобы понять в каком состоянии находиться система защитного отключения электричества.

Если УЗО не сработает это очень опасно, значит в самое ближайшее время необходимо разобраться почему оно не срабатывает и устранить проблему.

Конечно, правильно пользоваться услугами электриков, которые имеют разрешения на работы и сделают всё по технологиям, чтобы не пострадала безопасность.

УЗО соответственно должно быть включено и электричество в доме или квартире должно функционировать.

Тогда, при нажатии на эту кнопку «Тест» УЗО срабатывает и происходит отключение электропитания пока вы снова не включите «автомат» у нас он находиться в подъезде и когда нажимаешь кнопку «Тест» УЗО срабатывает и отключается питание, нужно идти и включать в щитке рубильник для возобновления подачи электроэнергии.

Спасибо за чтение! Подписывайтесь на канал и ставьте лайк, если понравилась статья

Понравилась статья? Подпишитесь на канал, чтобы быть в курсе самых интересных материалов

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector