Oncool.ru

Строй журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Ir sensor switch инфракрасный сенсорный выключатель

Сенсорный выключатель DeLUMO для управления одной зоной освещения

Выбор цвета стекла: 9003 WHITE PURE (НАТУРАЛЬНЫЙ БЕЛЫЙ)

Примеры на различных поверхностях*

* на фотографии символы одноканального трехклавишного выключателя

** — радиореле в стоимость не входит

Основные технические характеристики

Напряжение питания 3 В, элемент питания CR2450

Расчетное время работы без замены элемента питания до 14 лет

Частота передачи 868 мГц

Максимальная дальность передачи 250 метров в прямой видимости

Температурный диапазон эксплуатации от 0°C до +50°C

Габаритные размеры 80x80x11 мм


Управление нагрузкой (освещением). Подключение радиореле к нагрузке (освещению)

Подключение сети 220 вольт:
Коричневый провод:
L фаза 220 вольт.
Синий провод: N нейтраль.

Подключение нагрузки (освещения):
Красный провод:
L1 фаза 220 вольт.
Синий провод: N нейтраль.

Режим ознакомления (регистрации) с одноканальным сенсорным радиопультом.

Нажмите и удерживайте кнопку SET/RESET на 1-2 секунды до момента, когда загорится красный светодиод. Радиореле готово к приему команды от радиопульта

Нажмите на клавишу радиопульта. При получении команды, адрес этого радиопульта будет занесен в список устройств, которым разрешено управление данным радиореле.

ВНИМАНИЕ! Режим ознакомления включается автоматически, если в памяти радиореде нет ни одного зарегистрированного радиопульта, либо после выполнения режима RESET и индицируется попеременным свечением красного и зеленого светодиода. Если в режиме ознакомления будет передана команда от уже ранее зарегистрированного радиопульта, никаких действий по ознакомлению не происходит. Зеленый светодиод произведет индикацию его порядкового номера. Далее автоматически включится дежурный режим. Сама команда управления при ознакомлении не выполняется. При завершении процесса ознакомления красный светодиод на радиореле моргнет несколько раз. Количество вспышек светодиода соответствует записанному в память радиореле порядковому номеру радиопульта.

Пример размещения радиореле

Установка сенсорной панели радиопульта

Закрепите на стене специальную пластиковую рамку с помощью двух саморезов в отверстия (А) или приклейте ее на ровную поверхность с помощью двухстороннего скотча. ВНИМАНИЕ. Монтировать рамку к стене нужно так, чтобы прорези на рамке были направлены вниз. Вставьте корпус панели в специальную пластиковую рамку (3). Нажмите на панель до щелчка (4).

Снятие сенсорной панели радиопульта

Для снятия панели Вам понадобиться специальная П-образная скоба (входит в комплект), которую нужно вставить в специальные отверстия (1) на нижней стороне корпуса панели. Аккуратно потянув скобу на себя (2), отщелкните (отожмите) пластиковые защелки и снимите панель.


Как установить сенсорный выключатель своими руками

Подключить сенсорный выключатель необходимо для повышения уровня комфорта, и чтобы увеличить срок эксплуатации осветительных приборов. Это высокотехнологичное устройство, предназначенное для управления иллюминацией. Если ознакомиться с механизмом, можно установить его самостоятельно.

  1. Устройство сенсорного выключателя
  2. Как работает прибор
  3. Схема подключения
  4. Ремонт сенсорного выключателя
  5. Сенсорный выключатель света срабатывает сам
  6. Рекомендации по выбору

Устройство сенсорного выключателя

Сенсорные выключатели – это датчики, которые реагируют на прикосновение. В составе прибора:

  • Высокочувствительный элемент, реагирующий на приближение человеческого тела и его прикосновение к сенсору.
  • Усилитель сигнала, состоящий из полупроводников и микросхем.
  • Коммутационное устройство в виде реле или тиристора. Приборы на последнем более надежные, так как нет контактной части, которая подгорает и окисляется с течением времени.

Они могут работать при любом типе освещения. Но иногда можно заметить, что светодиодные лампы небольшой мощности мигают, если сенсорное устройство выключено.

Как работает прибор

После легкого прикосновения к панели производится сигнал, преобразующийся и вызывающий включение реле.

С помощью встроенных универсальных устройств сенсорного типа обустраивают систему умный дом. Они используются для контроля работы приборов обогрева, открытия и закрытия оконных роллетов и для других целей.

Принцип работы устройства основан на регулировке тока с помощью микросхемы, тогда как для обычных переключателей используют стандартные скользящие контакты. Такая плата позволяет избежать короткого замыкания. Благодаря чему повышается срок эксплуатации ламп и ресурс выключателя.

Бытовые модели электронных приборов используют в сети с напряжением в 220 В. К ним подключают бра, управляют и регулируют подсветку или основную иллюминацию.

Главным преимуществом таких выключателей считается удобство управления. От обычных они отличаются специальным сенсором, фиксирующим тепло рук. Он реагирует на касание или на звуковой сигнал.

Так как сенсорный датчик не может самостоятельно воспроизводить сигналы, достаточные для регулировки светотехники напрямую, в устройства устанавливают усилительные приборы, например, транзисторы или другие элементы.

Схема подключения

Установить сенсорный выключатель так же легко, как и обычный встроенный или накладной механический. Процедура состоит из таких шагов:

  1. Снять стеклянную панель. Удобно это делать тонкой шлицевой отверткой.
  2. Подключить монтажные провода по схеме, которая изображена в паспорте устройства.
  3. Подключить плату с сенсорными контактами.
  4. Подключить панель с маркировкой кнопки.

Схема подключения однолинейного сенсорного выключателя

У некоторых производителей есть проходные выключатели на 220В. Они обладают способностью управления освещения из нескольких мест. Один будет основным, а остальные – вспомогательные. Первый оснащен тремя клеммами. К ним подключают фазу, ноль и управляющий проводник. Их помечают, как L-фаза, N-ноль, Com-управляющий провод.

Для многих китайские и европейские сенсорные выключатели неудобны по причине маленькой зоны панели, а для фиксации сигнала необходимо прикоснуться к указанному месту. Если есть желание, можно увеличить площадь косвенного контакта:

  1. Взять провод и припаять его к месту подачи сигнала с датчика на сенсорной плате.
  2. Уложить подключенный провод по периметру устройства.

Благодаря такой рамке датчик будет срабатывать при касании к лицевой панели.

Если самостоятельно усовершенствовать выключатель, гарантийные обязательства производителя будут аннулированы.

Ремонт сенсорного выключателя

Прибор действует благодаря замыканию и размыканию контактов электрической цепи. Выключатель может выйти из строя по причине:

  • Износа группы контактов.
  • Разрушения корпуса.
  • Разрушения клеммы и места фиксации проводов.
  • Расплавления всего прибора.

Перед тем как устранять неисправности, нужно прекратить подачу электричества, выключив рубильник на вводном щитке. Это обезопасит от поражения электрическим током. Перед ремонтом выключателя нужно установить в светильнике одну лампочку, чтобы проверять работоспособность схемы.

На клавишах и декоративных рамках выключателей предусмотрены небольшие выступы, которые позволяют поддеть элемент плоской отверткой и снять его без повреждений

Процедура состоит из таких шагов:

  1. Снять верхнюю панель.
  2. Демонтировать декоративную накладку, если она есть.
  3. Проверить с помощью индикатора, есть ли на приборе напряжение.
  4. Ослабить фиксаторы внутреннего крепления.
  5. Отсоединить провода от корпуса выключателя.
  6. Надеть предохранители на оголенные провода или сделать изоляцию с применением специальной ленты.
Читать еще:  Аварийный выключатель для вентилятора

Демонтированные элементы нужно подробно изучить, чтобы выявить деформации, следы плохих контактов и другие причины неисправности.

Чаще всего прибор выходит из строя из-за подгорания контактов. Их достаточно просто зачистить с применением небольшого отрезка наждачной бумаги. Также нужно проверить работоспособность фиксирующего винта, так как довольно часто поломка происходит из-за неплохого зажима проводов. Если нарушена целостность панели, это говорит об окончательной поломке выключателя и необходимости его замены.

Собирают выключатель внимательно, наблюдая за тем, чтобы удалось правильно подключить каждый провод. После этого проверяют работоспособность прибора.

Сенсорный выключатель света срабатывает сам

Подключение сенсорного выключателя света

Часто случается так, что сенсорные выключатели срабатывают без нажатия. В этом случае нужно тщательно осмотреть прибор. Возможно, причина в замыкании контактов.

Если повреждена сама сенсорная панель, нужно обратиться за помощью к специалистам. Если они не устранят проблему, придется менять прибор на новый.

Во время работы с сенсорными выключателями нужно соблюдать ряд правил предосторожности:

  • Включать устройства в сеть следует так, чтобы производилась коммутация фазы, а не нуля.
  • Если сеть питания работает с использованием заземляющего провода, его нужно подключить к соответствующим контактам.
  • Если в ходе установки выключателя был использован провод с множеством жил, концы нужно опрессовать и залудить. Иначе контакт будет нарушен, и соединение перегреется.

Важно, чтобы нагрузка соответствовала параметрам коммутатора.

Рекомендации по выбору

Выключатель с таймером

Чтобы выбрать подходящую модель выключателя, нужно определить наличие в нем дополнительных функций:

  1. Количество лампочек. Их может быть до трех.
  2. Интенсивность работы устройства. В некоторых выключателях установлен диммер, с помощью которого меняется сила тока, подающегося на лампочки.
  3. Наличие встроенного таймера. В проходных моделях можно задать время выключения. Когда он срабатывает, свет гаснет. Этот вариант идеален для коридора и лестничной площадки.
  4. Способ управления выключателем. На эту особенность покупатель ориентируется исходя из собственных предпочтений. Существуют приборы, которые работают от пульта, прикосновения, звука.

Сенсорные выключатели – это современные приборы для управления иллюминацией. Способ их установки не отличается от обычных механических приборов. Главное, соблюдать меры предосторожности. Поломки чаще всего случаются по причине замыкания контактов. Справиться с этой проблемой может человек, не обладающий дипломом электрика.

Как подключить инфракрасный сенсор к Arduino

Для проекта нам понадобятся:

  • Arduino UNO или иная совместимая плата;
  • инфракрасный датчик препятствий;
  • инфракрасный приёмник;
  • соединительные провода (рекомендую вот такой набор);
  • макетная плата (breadboard);
  • персональный компьютер со средой разработки Arduino IDE.

1 Описание и принцип действия ИК датчика препятствий

Длины волн разных типов электромагнитного излучения

Если оснастить, для примера, своего робота несколькими такими ИК модулями, можно определять направление приближения препятствия и менять траекторию движения робота в нужном направлении.

Модуль с ИК излучателем и ИК приёмником

Когда перед сенсором нет препятствия, на выходе OUT модуля напряжение логической единицы. Когда сенсор детектирует отражённое от препятствия ИК излучение, на выходе модуля напряжение становится равным нулю, и загорается зелёный светодиод модуля.

Помимо инфракрасного свето- и фотодиода важная часть модуля – это компаратор LM393 (скачать техническое описание на LM393 можно в конце статьи). С помощью компаратора сенсор сравнивает интенсивность отражённого излучения с некоторым заданным порогом и устанавливает «1» или «0» на выходе. Потенциометр позволяет задать порог срабатывания ИК датчика (и, соответственно, дистанцию до препятствия).

2 Подключение ИК датчика препятствийк Arduino

Подключение ИК модуля к Arduino предельно простое: VCC и GND модуля подключаем к +5V и GND Arduino, а выход OUT сенсора – к любому цифровому или аналоговому выводу Arduino. Я подключу его к аналоговому входу A7.

Модуль с инфракрасным датчиком подключён к Arduino Nano

3 Скетч Arduino для инфракрасного датчика препятствий

Скетч для работы с инфракрасным сенсором препятствий также предельно простой: мы будем читать показания с выхода модуля и выводить в монитор порта. А также, если ИК модуль обнаружил препятствие, будем сообщать об этом.

ИК датчик может состоять из одного только инфракрасного приёмника, как в этом случае:

ИК приёмник

Такой сенсор используется для детектирования и считывания различных инфракрасных сигналов. Например, таким датчиком можно принять управляющие сигналы ИК пульта от телевизора или другой бытовой техники. На модуле присутствует светодиод, который загорается, когда на приёмник попадает инфракрасное излучение. На выхода модуля – цифровой сигнал, который показывает, падает ли на сенсор ИК излучение или нет.

К Arduino модуль с ИК приёмником подключается тоже очень просто:

Пин модуляПин ArduinoНазначение
DATЛюбой цифровойПризнак наличия ИК излучения на входе приёмника
VCC+5VПитание
GNDGNDЗемля

Подключение ИК приёмника к Arduino

Напишем скетч, в котором будем просто показывать с помощью встроенного светодиода, что на входе приёмника присутствует ИК излучение. В данном модуле аналогично с ранее рассмотренным на выходе DAT уровень «0», когда ИК излучение попадает на приёмник, и «1» когда ИК излучения нет.

Если загрузить этот скетч в Arduino, направить на ИК приёмник ИК пульт и нажимать на нём разные кнопки, то мы увидим, что светодиод нашего индикатора быстро мигает. Разные кнопки – по-разному мигает.

Чтение команд ИК пульта с Arduino

Очевидно, что каждая команда закодирована своей бинарной последовательностью. Хотелось бы увидеть, какие именно команды приходят от пульта. Но прежде чем ответить на этот вопрос, нужно посмотреть другим способом, что же отправляет пульт. А именно – с помощью осциллографа. Подключим осциллограф DS203 к тому месту, где сигнал непосредственно излучается в пространство: к аноду инфракрасного светодиода.

Осциллограф отображает часть команды ИК пульта

На осциллограмме видна серия «пачек» импульсов примерно одинаковой длительности. Каждая «пачка» состоит из 24-х импульсов.

Осциллограф отображает часть команды ИК пульта

Подключение выхода с ИК приёмника и выхода ИК пульта к осциллографу

Вот так выглядит посылка пульта целиком. Здесь жёлтая линия – аналоговый сигнал пульта ДУ, голубая – цифровой сигнал с выхода ИК приёмника. Видно, что продолжительность передачи составляет примерно 120 мс. Очевидно, время будет несколько варьироваться исходя из того, какие биты присутствуют в пакете.

Осциллограмма пакета с ИК пульта ДУ

При большем приближении видно, что высокочастотное заполнение, которое имеется в аналоговом сигнале, в цифровом сигнале с ИК приёмника отсутствует. Приёмник прекрасно справляется со своей задачей и показывает чистый цифровой сигнал. Видна последовательность коротких и длинных прямоугольных импульсов. Длительность коротких импульсов примерно 1,2 мс, длинных – в 2 раза больше.

Биты пакета ИК пульта, масштаб: 1 клетка – 200 мкс Биты пакета ИК пульта, масштаб: 1 клетка – 1 мс Начало пакета ИК пульта, масштаб: 1 клетка – 5 мс, только цифровой сигнал

Мы уже видели подобный сигнал, когда разбирали сигнал комнатной метеостанции. Возможно, здесь применяется тот же способ кодирования информации: короткие импульсы – это логический ноль, длинные – логическая единица. На следующем видео можно посмотреть пакет целиком:

Если зарисовать этот пакет, то получится как-то так:

Один из пакетов ИК пульта

Дальнейшие исследования показали, что все пакеты данного пульта ДУ состоят из двух пачек импульсов. Причём первая всегда содержит 35 бит, вторая – 32.

Есть несколько вариантов, как поступить для получения цифровых данных пакета:

  1. опрашивать пакет через равные промежутки времени (т.н. «стробирование»), а затем принимать решение, это логический «0» или «1»;
  2. ловить фронты импульсов (детектор фронта), затем определять их длительность и также принимать решение, какой это бит.

Напомню, что будем считать короткие импульсы логическим нулём, длинные – логической единицей.

Для реализации первого варианта понятно, с какой частотой необходимо опрашивать ИК датчик, чтобы принимать с него корректные данные: 600 мкс. Это время в два раза меньшее, чем длительность коротких импульсов сигнала (логических нулей). Или, если рассматривать с точки зрения частоты, опрашивать приёмник нужно в 2 раза большей частотой (вспомним Найквиста и Котельникова). Напишем скетч, реализующий вариант со стробированием.

Скетч для чтения пакета от ИК пульта методом стробирования

Поэкспериментируем с данным скетчем и ИК приёмником. Загрузим скетч в память Ардуино. Запустим последовательный монитор. Нажмём на пульте несколько раз одну и ту же кнопку и посмотрим, что мы увидим в мониторе.

Выводим принятые пакеты ИК пульта в последовательный монитор

Это похоже на пакет, который мы видели на осциллограмме, но всё-таки есть ошибки. Между одинаковыми пакетами также встречаются различия, которых быть не должно. Можно улучшить результат, если увеличить частоту стробирования, чтобы точнее определять биты пакета. Для безошибочного приёма необходимо чтобы строб попадал ближе к середине импульса. Но мы не можем гарантировать это, т.к. импульсы могут распространяться с варьирующимися задержками; Arduio выполняет код также не моментально, каждый цикл требует малого, но всё же времени, поэтому с каждым битом мы немного будем уходить от исходной позиции посередине импульса и рано или поздно «промахнёмся» (определим бит с ошибкой).

Перепишем скетч, используя метеод детекции фронтов.

Скетч для чтения пакета от ИК пульта методом детекции фронтов

Здесь мы ввели таймаут, чтобы выходить из цикла в любом случае, даже если фронт импульса не пришёл. Это гарантирует, что мы не окажемся в бесконечном цикле ожидания.

Загрузим скетч, запустим монитор, нажмём несколько раз ту же кнопку пульта.

Выводим принятые пакеты ИК пульта в последовательный монитор

Результат, как видно, более стабильный.

Установка инфракрасного датчика для управления светом

Инфракрасные датчики (или, как их ещё называют, пирометрические) – самые популярные устройства из соответствующего модельного ряда, представленного сегодня на рынке. Они считаются одними из самых безвредных аппаратов, т.к. не ничего не излучают (как ультразвуковые или микроволновые аналоги), а лишь улавливают изменения температур в помещении. Благодаря невысокой стоимости и долгому сроку службы их чаще всего выбирают для освещения домов, квартир или улиц.
Однако и они имеют недостаток — грешат частыми ложными срабатываниями. Поэтому тщательно подбирайте место их установки. Нужно располагать их подальше от отопительных приборов, кондиционера и т.п. Так как исходящее от них тепловое излучение может восприниматься датчиком движения, как сигнал к замыканию цепи и включению освещения.
Давайте рассмотрим виды ик-датчиков, конструкцию и все нюансы их работы. Возможно, данный материал вдохновит вас на создание этого полезнейшего в любом хозяйстве устройства, которое позволит существенно снизить расход электроэнергии.

Общие сведения

Существует два подтипа инфракрасных датчиков: движения и присутствия. Несмотря на схожесть конструкции, есть небольшое отличие в их работе.
Первые — реагируют только на выявленные активные передвижения (сопровождаемые ик-излучением, идущим от тела человека), и включают (выключают) свет.
Вторые — постоянно мониторят помещение на предмет наличия всех (даже пассивных) движений, обычно издаваемых человеком. Как только они прекращаются — в течение времени, заданного в настройках – цепь размыкается и свет гаснет, даже если человек не ушёл.
Посмотрим, из чего же состоит PIR (аббревиатура от пассивного инфракрасного датчика). В качестве примера ниже приведена конструкция импортного D203S, со схемой его подключения:

Он не требует никаких дополнительных элементов и может прямо впаиваться в схему освещения.
Аналог советского образца, типа ПМ-4, обязательно нужно дополнять полевым транзистором.

Впрочем, примитивный датчик можно сделать самостоятельно из старого транзистора. Для этого возьмите транзистор, вроде представленного ниже, отпилите верх корпуса, чтобы обнажить встроенный кристалл. Должно получиться следующее:

Ботовую «болванку», прикрыв любым светофильтром, можно использовать как сенсор. Правда, дальность улавливания движений у него будет невелика.

Схемы блоков с ик-датчиками присутствия, произведённые в заводских условиях, выглядят так.

Схемы блоков с ик-датчиками

Сверху, над датчиком со встроенным кристаллом, устанавливается ячеистая, куполообразная линза Френеля, фокусирующая сигнал. Обычно она выполняется из пластика (для удешевления блока), поэтому обращаться с ней нужно аккуратно.

Несмотря на неказистый вид, линза играет очень важную роль. Она выполняет функцию «концентратора», и направляет усиленный пучок инфракрасного излучения, идущего от людей, на сенсор (кристалл) датчика.

Благодаря тому, что линзы на пластиковой сфере разнонаправлены, возможен охват больших площадей в помещении.
В целом, это одна из самых популярных систем: недорогая, энергоэффективная, компактная и долговечная.

Сделай сам

Сегодня предлагается масса готовых PIR-блоков промышленного производства. Но почему бы не попробовать его собрать самостоятельно? Дееспособный модуль для включения света можно сделать своими руками, главное обладать базовыми навыками чтения электросхем и пайки.
Хоть обычно используемые мастерами схемы и не предполагают присутствия большого количества дорогостоящих деталей, однако времени на сборку придётся потратить немало.

Итака, для приведённой выше схемы вам понадобятся: В1 — сам PIR-сенсор, VТ 1 — полевой транзистор, VD 1 – фотодиод, VD 2,VD 3- диоды, VD 4, VD 6 – диодные мосты, VD 5– стабилитрон, Т 1 – трансформатор, DA1- таймер параллельного стабилизатора, DA2 – таймер аналоговый, DA3- линейный регулятор, VU1 – оптопара, FU1 – предохранитель, R1 — R11 — резисторы, C1 — C4 – конденсаторы, HL1 – светодиод.

Конечный результат должен выглядеть следующим образом. Прибор получается достаточно компактным – 15,0× 6,0× 9,0 см. При условии настройки — он может улавливать передвижения теплокровных объектов на расстоянии 1-12 метров от сенсора. И потребляет при этом ничтожные 5 ватт.

К такой системе можно подсоединять как лампы накаливания, так и энергосберегающие. Однако не следует превышать максимальный порог нагрузок мощности, равный 1000 Вт.
К счастью, вовсе необязательно корпеть над платами, ведь купить такие модули – не проблема. На сайтах продукции (производства КНР) вы найдёте массу предложений готовых PIR-схем, стартующих от 70 рублей. Их можно подключать напрямую к имеющейся системе освещения.

Подключение

Если Вы собираетесь своими руками устанавливать готовые датчики включения света — приведём простые рекомендации, от которых можно отталкиваться. Алгоритм подключения датчиков к осветительной сети выглядит одинаково для всех типов устройств. Первое, что Вы должны сделать перед началом монтажа – обесточить квартиру.

Имейте в виду, что схема датчиков предполагает наличие дополнительного провода для заземления. Так что если у вас дома он не предусмотрен – придётся тянуть его от щитка или распредкоробки.

Ниже приведены самые популярные схемы монтажа датчиков движения на существующих линиях. Их чаще всего рекомендуют сами производители PIR.

Монтаж датчиков движения

На рисунках — красный провод, помеченный литерой «L» – это фаза, синий провод с пометкой «N» – это ноль, чёрный (в некоторых случаях коричневый, жёлтый или зелёный) – это выходная (или коммутируемая) фаза – идущая с датчика на светильник.

Обращаем внимание, что приведённые цвета проводов не являются догмой. Производитель может менять их на своё усмотрение, поэтому обязательно читайте инструкцию или, вскрыв корпус, изучите схему прибора.

Первая схема – простая и эффективная, при монтаже которой включением-выключением света руководит датчик, вторая – предоставляет возможность самостоятельного включения лампы пользователем, когда в этом есть необходимость, минуя датчик. Только для этого нужно будет оборудовать отдельный выключатель, и тогда лампа будет работать столько, сколько нужно, без присутствия человека.
Если для освещения большого помещения планируется установить сразу нескольких датчиков, можно воспользоваться следующим алгоритмом подключения:

Подключение нескольких датчиков

Каким бы блоком не было выявлено присутствия пользователя, цепь освещения замкнётся в любом случае.
И ещё один важный момент. При подключении датчика к действующей сети освещения, обязательно убедитесь, что мощность используемого светильника не превышает выходящей мощности датчика. Иначе последний попросту может сгореть.

Если у вас нет опыта создания подобных систем, рекомендуем перед окончательным монтажом проверить собранную цепь на работоспособность. Для этого подсоедините её к временной схеме и испытайте, срабатывает ли датчик на ваши движения. Как вариант, попробуйте сделать так:

Правильное размещение

Как уже упоминалось, важное значение имеет правильное размещение датчиков присутствия в комнате. Как видно из рисунка ниже — лучшие места – углы комнаты, удалённые от батарей центрального отопления или стены, свободные от кондиционеров, увлажнителей воздуха или конвекторов.

Не стоит устанавливать их и напротив окон, иначе попадающие на сенсоры лучи света будут провоцировать постоянные ложные срабатывания, даже без присутствия человека. Не самое лучшее место и у двери – так как каждый раз, когда вы будете приходить мимо, сенсор будет реагировать на ваши движения путём включения света. А для большей части современных ламп это не есть хорошо. Они намного быстрее выходят из строя. Да и наличие вибраций от хлопанья дверью — далеко не оптимальные условия для эксплуатации микросхем.
Радиус действия (чувствительности) такого датчика обычно составляет 3-10 метров, в зависимости от используемой модели. Поэтому для нормального освещения длинных или неправильной формы помещений рекомендуется использовать сразу несколько датчиков движения.
Оптимальная высота монтажа – под потолком, на 2,4 – 3 метра от пола. Чтобы в радиус покрытия датчика не попадали никакие другие источники тепла (кроме жильцов) регулируйте угол наклона и направленность сенсора. Это же относится и другим светильникам в комнате – иначе датчик будет срабатывать на лампу накаливания – как на источник тепла.
Кстати, по поводу ламп — для связки с датчиком движения лучше выбирать светодиодные или галогенные модели. Они экономны, дают достаточно яркий поток света и главное, невосприимчивы к частым включениям-выключениям так, как, например, люминесцентные.
Хотя со многими моделями датчиков светодиодные лампы не работают или светят в пол силы. А некоторые схемы и вовсе предполагают только лампы накаливания, мощностью не менее 40 Вт. Энергосберегающие лампы также могут «моргать» ночью (даже при условии выключения света) из-за неправильно подсоединённого выключателя с индикатором (диодной лампочкой). Чтобы избежать проблем с морганием LED-ламп, нужно использовать специальный сетевой адаптер, который будет выдавать постоянное напряжение, без которого диоды не могут работать нормально.
Ниже приложена схема расположения датчиков движения на примере однокомнатной квартиры.

Как видим, для небольших помещений вполне достаточно одного датчика присутствия. Проблематичнее всего будет выбрать место и подходящий угол наклона сенсора на кухне, так как конвекционные токи от плиты, готовых блюд, микроволновки и т.д. будут провоцировать ложные срабатывания. Возможно, здесь даже придётся воспользоваться датчиками другого типа (ультразвуковым или микроволновым).

Инфракрасные датчики – отличный способ рационально использовать электроэнергию, используемую на освещение. Да и вообще – с ними просто удобно. Не нужно впотьмах разыскивать на стене клавишу для включения света. Такие модули не так уж сложно сделать своими руками, главное — не напутать с фазами и допустимыми уровнями тока с напряжением.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector