Oncool.ru

Строй журнал
6 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Монтаж приводов масляных выключателей

Монтаж приводов масляных выключателей

  • Главная
  • Новости
  • Скачать
  • Статьи
  • Форум
  • Видео
  • Регистрация
  • Вход
  • Поиск
  • Добавить чертеж
  • Как добавить видео с youtube
  • Помощь
  • Реклама

Чертежи и проекты

Подразделы

Плавающий

Формат dwg pdf

Для нужд пожарного водопровода проектом предусматривается устройство двух резервуаров по 200 м3 каждый, а также насосная станция.

В архмиве 3d модель насоса HYDRO MX-A

Системы электрооборудования жилых и общественных зданий

1. Программа «Мост_Х» предназначена для определения грузоподъёмности балочных разрезных пролётных строений автодорожных мостов и путепроводов, находящихся на прямом в плане участке автодороги.

Формат Exel

Программа в свободном доступе, скачать можно после регистрации

Формат dwg

г. Караганда. Казахстан

Блочно-модульная котельная для здания пришахтинского овд

Формат dwg

Исходный текст на китайском

Чертежи и узлы сложной деревянной крыши для частного дома в dwg

Чертежи гирлянд в dwg, удлиненная и стандартная

ППР разработан на производство работ по расширению просек ВЛ-220кВ и утилизации порубочных остатков

IP-видеорегистратор CMD-NVR5109 V2 поддерживает подключение до 9 IP-камер с разрешением 1920×1080 и скоростью записи 25 к/с на каждый канал.

Глубина архива видеорегистратора составляет один месяц при постоянной круглосуточной записи с 8 IP-видеокамер за счет установки жесткого диска объемом 6 ТБ.

Формат dwg

Рабочий проект системы видеонаблюдения СВН дома в dwg

Pereosnastka.ru

Обработка дерева и металла

Привод ПП-67 – пружинный, косвенного действия, применяется с выключателями ВМГ -133 и ВМГ -10. Основные узлы привода смонтированы на металлическом сварном корпусе на наружной стенке:
— автоматическое двигательное заводящее устройство, состоящее из электродвигателя, червячного одноступенчатого редуктора, системы зубчатых колес, системы рычагов, связи редуктора с включающими пружинами, контакта в переключателе;
— силовой орган привода, состоящий из трех включающих пружин, узла предварительного натяжения включающих пружин с регулировочным болтом;
— сигнально-командные блок-контакты (типа КСА ): положения вала, привода, состояния включающих пружин, встроенных в переключатель, и аварийные.

При технических осмотрах привод не разбирают. В случае необходимости капитального ремонта и регулировки привод разбирают с соблюдением следующих требований: включающие пружины должны быть не заведены и до минимума ослаблено предварительное натяжение, выключатель отключен, оперативное напряжение с привода снято.

Не нарушая регулировки, проверяют целость всех деталей, подтягивают ослабнувшие крепления. Особое внимание обращают на поверхность защелок, несущих ударную нагрузку с рычагами. Трещины и сколы недопустимы. При сильном износе эти детали заменяют. Механизм привода очищают, смазывают и регулируют.

Проверяют качество зацепления защелки с рычагом вала, которое должно быть надежным. Величина зацепления, регулируемая винтом, упирающимся в планку рычага, должна составлять 4—5 мм. В другом крайнем положении рычаг вала защелкивается удерживающей защелкой. Между защелками не должно быть трения, пружины возврата защелок не должны быть слабыми.

Регулируют пружинный буфер, назначение которого смягчать удар заводящего рычага при включении выключателя. Высоту буфера регулируют прокладками или спиливанием торца штока буфера. Величина сжатия буфера должна быть 0,5 — 1 мм.

Включение выключателя зависит также от состояния пружин. Регулировку их производят регулировочным болтом. Отключающий механизм регулируют винтом на релейной планке, так чтобы величина зацепления планки ударника расцепления с роликом была порядка 1 мм.

Рис. 1. Привод ПП-67:
1, 5, 14, 17 и 18 — рычаги, 2 — электродвигатель, 3 — редуктор,4 — рукоятка, 6 – зубчатая передача, 7 — упор, 8 — планка, 9 — включающие пружины. 10-регулировочный болт, И — траверса, 12 – груз, 13 — зуб траверсы, 15 — отражатель, 16 — корпус, 19 – конечный выключатель

Рис. 2. Кинематическая схема привода ПП-67:
1,3 и 26 — электромагниты, 2, 4, 10, 11 и 24 — рычага, 5 и 6 — ролики, 7 и 21 — защелки, 8 и 9 — кнопки отключения и включения, 12, 14 и 25 – оси, 13 – запорно-пусковой механизм, 15 и 28 – блок-контакты, 16 и 18 – стойки, 17 — планка, 19 — вал привода, 20 — ударник расцепления, 22 — буфер, 23 — опора релейной оси, 27 – устройство ЛПВ

Рис. 3. Регулировка включающего и удерживающего механизмов привода ПП-67:
1 и 5 – зашелки, 2 и 7 – планки, 3 — стойка, 4 – ударник расцепления, 6 и 9 – рычаги, 8 – регулировочный винт

Рис. 4. Регулировка пружинного буфера:
1 — регулировочные прокладки, 2 – буфер

Регулировку подъема ударника осуществляют винтом стойки. Расстояние между планкой и роликом стойки должно быть 2 — 4 мм. При максимальном подъеме ударника последний не должен ударять по корпусу привода.

Рис. 5. Регулировка отключающего механизма:
1 – корпус привода, 2 – ось кронштейна, 3 и 5 — планки, 4 – ролик

Рис. 6. Регулировка подъема ударника расцепления:

Особенности устройства и ремонта привода выключателя ВМПП -10.

Привод выключателя состоит из следующих основных узлов: рамы, вала привода, вала выключателя, заводного устройства рабочих пружин, двух одинаковых запорных устройств, удерживающих вал привода в «отк» или «вкл» положении выключателя, блок-контактов положения привода ( БКП ), аварийной сигнализации ( БКА ) и положения выключателя ( БКВ ), электромагнитов дистанционного отключения и включения, релейного вала — пульта ручного управления выключателем, монтажных проводов и контактной колодки.

Рис. 7. Привод, встроенный в выключатель ВМПП -10:
1 — рама, 2 — заводное устройство, 3 — вал выключателя, 4 — релейный вал, 5 и 7 — электромагниты, 6 — кнопка «откл», 8 — кнопка «вкл», 9 — блок-контакты БКП , 10 — барабан и вал привода, 11 — рычаг ручного завода пружин, 12 — блок-контакты БКВ . 13 — диск

Рис. 8. Вал привода:
1, 7 и 8 — обоймы, 2 — щека, 3, 10 — шайбы, 4 — вал, 5— подшипник, 6 — кольцо, 9 – планка, 11 – пружины, 12 – крышка, 13 – диск, 14 – поводок, 15 — рычаг, 16 — эксцентрик, 17 — шпилька, 18 — барабан

Вал привода состоит из следующих основных узлов: вала барабана, в котором размещены в отличие от пружин растяжения ( ВМГ -133; ВМГ -10) три плоские спиральные пружины, являющиеся энергоносителем привода диска, навинченного на резьбовую часть вала и соединенного с барабаном через крышку посредством шпилек с обгонной муфтой, сварного рычага, состоящего из эксцентрика, ступиц, четырех рычагов. На эксцентрик одевается поводок, соединяющий вал привода с валом выключателя. Сварной рычаг крепится к валу штифтом.

С другой стороны вала к барабану крепится внутренняя обойма обгонной муфты. На внутреннюю обойму одеты две наружные: обойма для автоматической и для ручной заводки. Заводное устройство состоит из электродвигателя и редуктора, на выходном валу которого установлен эксцентрик с рычагом, рычаг соединен с обоймой обгонной муфты вала привода.

Операция осмотра при техническом обслуживании аналогична описанной для привода ПП-67. При капитальном ремонте обращается особое внимание на состояние поверхностей защелок и собачек, на состояние тяг, рабочих заводных пружин, запорных устройств и других деталей, подвергающихся во время работы привода большим нагрузкам. Зазоры должны быть отрегулированы в соответствии с заводской инструкцией.

Особенности устройства и ремонта привода ПЗ-11. Привод является электромагнитным, прямого действия. Тяговые усилия для включения масляного выключателя создаются сердечником и электромагнитной катушкой, потребляющей электрическую энергию постоянного тока 110 или 220 В. Сердечник, связанный с системой рычагов, производит включение выключателя.

Рис. 9. Привод электромагнитный ПЭ-11

Привод состоит из электромагнитной катушки, сердечника, системы рычагов, вала привода, регулировочного винта, удерживающей защелки, сигналь-но-блокировочных контактов, осей, блок-контактов, собачки и рукоятки (кнопки) для ручного отключения и отключающего электромагнита. Механизм привода закрыт съемной крышкой. При подаче напряжения на катушку сердечник со штоком перемещается вверх, упирается в ролик, поднимает ось и поворачивает вал привода. Собачка запирает привод во включенном положении, а блок-контакт КБВ совместно с контактором, который поставляется с приводом, разрывает цепь питания. Объем технического осмотра привода не отличается от описанного для привода ПП-67.

Читать еще:  Выключатель автомат compact ns160n

При капитальном ремонте все детали очищают, тщательно осматривают, контактные поверхности зачищают, обращая особое внимание на поверхности защелки, отключающей собачки, ролика рычага. Проверяют состояние пружин, осей и шплинтов. Подтягивают гайки, болты и винты. Трущиеся части смазывают, очистив их предварительно от следов старой смазки. При регулировке привода: зазор между отключающей собачкой и роликом рычага регулируют винтом в отключенном положении, и он должен составлять 1 мм; во включенном положении зазор между винтом и осью должен быть около 1 мм. Винт фиксируется гайкой. При полностью поднятом штоке отключающего электромагнита зазор между осью 6 и поверхностью защелки должен быть 1 — 1,5 мм. Этот зазор регулируют штоком сердечника. Ход сердечника у отключающего электромагнита должен быть равен 18 — 20 мм. По условиям безопасности при регулировке отключающую собачку следует застопорить стальной планкой 16 размером 6 х 20 х 60 мм. После регулировки планку удаляют. Для нормальной работы привода должны быть отрегулированы зазоры блок-контактов включения и отключения КБВ и КВО между собачками и храповиками. Зазоры А, Б, В и Д должны соответствовать заводским данным.

Рис. 10. Регулировка привода ПЭ-11:
1 – боек отключающего электромагнита, 2 – электромагнит, 3 – регулировочный винт, 4 – защелка, 5 – ролик, 6, 15 – оси, 7, 8, 11 и 12 – рычаги, 9 – вал приво. Да, 10 – распорка, 13 – собачка, 14 – рукоятка, 16 – предохранительпая планка, «-угол расцепления 15° Р – Полный угол поворота 60°

Рис. 11. Регулировка быстродействующих блок-контактов:
а — КБВ , 6 — КБО ; 1 — включенное положение, 2 — отключенное положение

Высоковольтные выключатели постоянного и переменного тока

Высоковольтный выключатель

Высоковольтный выключатель — защитно-коммутационный аппарат, предназначенный для оперативных включений и отключений отдельных цепей или электрооборудования в энергосистеме в нормальных или аварийных режимах при ручном, дистанционном или автоматическом управлении.

Высоковольтный выключатель состоит из: контактной системы с дугогасительным устройством, токоведущих частей, корпуса, изоляционной конструкции и приводного механизма (например, электромагнитный привод, ручной привод).

Выключатели среднего и высокого напряжения (номинальное напряжение 6 — 1150 киловольт) и большим током отключения (до 50 килоампер) используются на электрических станциях и подстанциях. Эти выключатели представляют собой довольно сложную конструкцию, управляемую электромагнитными, пружинными, пневматическими или гидравлическими приводами.

В зависимости от среды, в которой производят гашение дуги, различают воздушные выключатели, в которых дуга гасится сжатым воздухом, масляные выключатели, в которых контакты помещаются в ёмкость с маслом, а дуга гасится парами масла, элегазовые выключатели, в которых используется электропрочный газ SF6 — «элегаз», и вакуумные выключатели, в которых гашение дуги происходит в вакууме — в так называемой вакуумной дугогасительной камере (ВДК). Защитная среда одновременно с гашением дуги обеспечивает и диэлектрическую прочность промежутка между контактами в отключенном положении, от чего зависит и величина хода контактов.

Классификация высоковольтных выключателей

По способу гашения дуги

  • Элегазовые выключатели (баковые и колонковые);
  • Вакуумные выключатели;
  • Масляные выключатели (баковые и маломасляные);
  • Воздушные выключатели;
  • Автогазовые выключатели;
  • Электромагнитные выключатели;
  • Автопневматические выключатели.

По назначению

  • Сетевые выключатели на напряжения от 6 кВ и выше, применяемые в электрических цепях (кроме цепей электрических машин и электротермических установок) и предназначенные для пропускания и коммутирования тока в нормальных условиях работы цепи, а также для пропускания в течение заданного времени и коммутирования тока в заданных ненормальных условиях, таких как условия короткого замыкания.
  • Генераторные выключатели на напряжения от 6 до 20 кВ, применяемые в цепях электрических машин (генераторов, синхронных компенсаторов, мощных электродвигателей) и предназначенные для пропускания и коммутаций тока в нормальных условиях, а также в пусковых режимах и при коротких замыканиях. Отличаются, как правило, большими значениями номинального тока (до 10000А) и тока отключения.
  • Выключатели на напряжение от 6 до 220 кВ для электротермических установок, применяемые в цепях крупных электротермических установок (например, сталеплавильных, руднотермических и других печей) и предназначенные для пропускания и коммутаций тока в нормальных условиях, а также в различных эксплуатационных режимах и при коротких замыканиях.
  • Выключатели нагрузки — выключатели, предназначенные для коммутаций под номинальным током, но не рассчитанные на разрыв сверхтоков. Применяются в сетях 3-10 кВ с изолированной нейтралью для коммутации небольших нагрузок — до нескольких мегавольт-ампер.
  • Реклоузеры подвесные секционирующие дистанционно управляемые выключатели, снабжённые защитой и устанавливаемые на опорах воздушных ЛЭП.
  • Выключатели специального назначения.

По виду установки

  • Опорные, то есть имеющие основную изоляцию на землю опорного типа.
  • Подвесные, то есть имеющие основную изоляцию на землю подвесного типа.
  • Настенные, то есть укрепленные на стенах закрытых распределительных устройств.
  • Выкатные, то есть имеющие приспособления для выкатывания из ячеек распредустройств (для обслуживания, ремонта и для создания т.н. «видимого разрыва» при работах на линиях).
  • Встраиваемые в комплектные распределительные устройства (КРУ).

По категориям размещения и климатическому исполнению

  • пять категорий размещения (вне и внутри помещений с различными условиями обогрева и вентиляции);
  • десять климатических исполнений (У, ХЛ, УХЛ, ТВ, ТС, Т, М, ОМ, В и О) в зависимости от географического места установки.

Общее устройство и принцип действия высоковольтных выключателей

Воздушный выключатель

В воздушных выключателях (ВВ) энергия сжатого воздуха используется и как движущая сила, перемещающая контакты, и как дугогасящая среда. Принцип действия дугогасительного устройства (ВВ) заключается в том, что дуга, образующаяся между контактами, подвергается интенсивному охлаждению потоком сжатого воздуха, вытекающего в атмосферу. При прохождении тока через ноль температура дуги падает и сопротивление промежутка увеличивается. Одновременно происходит механическое разрушение дугового столба и вынос заряженных частиц из промежутка.

Воздушные выключатели конструктивно подразделяются на:

  • Выключатель с открытым отделителем
  • Выключатель с газонаполненным отделителем
  • Выключатель с камерами в баке со сжатым воздухом

Элегазовый силовой выключатель

Изолирующей и гасящей средой выключателей служит гексафторид серы SF6 (элегаз). Выключатели представляют собой трехполюсный аппарат, полюсы которого имеют одну (общую) раму и управляются одним приводом, либо каждый из трех полюсов выключателей имеет собственную раму и управляется своим приводом (выключатель с пополюсным управлением).

Принцип работы аппаратов основан на гашении электрической дуги (возникающей между расходящимися контактами при отключении тока) потоком элегаза.

Источников возникновения потока газа — два:

  • повышение давления в одной из заполненных газом полостей дугогасительного устройства, обусловленное уменьшением ее замкнутого объема, возможность истечения газа из которой в зону расхождения дугогасительных контактов появляется непосредственно перед их размыканием;
  • повышение давления газа в этой же полости вследствие его расширения под действием тепловой энергии самой электрической дуги.

Первый источник превалирует при отключении малых токов, а второй — больших.

Полюс выключателя

Колонковое исполнение. Полюс представляет собой вертикальную колонну, состоящую из двух (и более) изоляторов, в верхнем из которых размещено дугогасительное устройство (ДУ), а нижний служит опорой ДУ и обеспечивает ему требуемое изоляционное расстояние от заземленной рамы. Внутри опорного изолятора размещена изоляционная штанга, соединяющая подвижный контакт ДУ с приводной системой аппарата.

Баковое исполнение. Полюс представляет собой металлический цилиндрический бак, на котором установлены два изолятора, образующие высоковольтные вводы выключателя. ДУ в таком выключателе размещено в заземленном металлическом корпусе.

Комбинированное исполнение. Полюс представляет собой металлический корпус в виде сферы, на котором установлены фарфоровые изоляторы, образующие высоковольтные вводы выключателя, в одном из которых размещено дугогасительное устройство, а в другом — встроенные трансформаторы тока.

В верхней части изолятора обычно устанавливается фильтр — поглотитель влаги и продуктов разложения элегаза под действием электрической дуги. Фильтрующим элементом в нем служит активированный адсорбент — синтетический цеолит NAX.

Также на всех современных выключателях установлен предохранительный клапан — устройство с тонкостенной мембраной, разрывающейся при давлении возникающем при внутреннем коротком замыкании, но не достигающем значения, при котором испытываются собственно изоляторы.

Читать еще:  Автомобильный usb адаптер с выключателем
Дугогасительное устройство

Дугогасительное устройство предназначено обеспечивать быстрое гашение электрической дуги, образующейся между контактами выключателя при их размыкании. Разработка рациональной и надежной конструкции дугогасительного устройства представляет значительные трудности, так как процессы, происходящие при гашении электрической дуги, чрезвычайно сложны, недостаточно изучены и обусловливаются многими факторами, предусмотреть которые заранее не всегда представляется возможным. Поэтому окончательная разработка дугогасительного устройства может считаться завершенной лишь после его экспериментальной проверки.

Современные выключатели оснащены дугогасительным устройством автокомпрессионного типа, которые демонстрируют свои расчетные преимущества при отключении больших токов.

ДУ содержит неподвижную и подвижную контактные системы, в каждой из которых имеются главные контакты и снабженные элементами из дугостойкого материала дугогасительные контакты. Главный контакт неподвижной системы и дугогасительный подвижной — розеточного типа, а главный контакт подвижной системы и дугогасительный неподвижной — штыревые.

Подвижная система содержит, кроме главного и дугогасительного контактов, связанную с токовым выводом ДУ неподвижную токоведущую гильзу; поршневое устройство, создающее при отключении повышенное давление в подпоршневой полости, и два фторопластовых сопла (большое и малое), которые направляют потоки газа из зоны повышенного давления в зону расхождения дугогасительных контактов. Большое сопло, кроме того, препятствует радиальному смещению контактов подвижной системы относительно контактов неподвижной, поскольку никогда не выходит из направляющей втулки главного неподвижного контакта.

Главный контакт подвижной системы представляет собой ступенчатую медную гильзу, узкая часть которой адаптирована ко входу в розеточный главный контакт неподвижной системы, а широкая часть имеет два ручья, в которых размещены токосъемные (замкнутые проволочные) спирали, постоянно находящиеся в контакте с охватывающей их неподвижной токоведущей гильзой.

Газовая система

Газовая система аппаратов включает в себя:

  • клапаны автономной герметизации (КАГ) и заправки колонн;
  • коллектор, обеспечивающий во время работы аппарата связь газовых полостей колонн между собой и с сигнализатором изменения плотности элегаза;
  • сам сигнализатор, представляющий собой стрелочный электроконтактный манометр с устройством температурной компенсации, приводящим показания к величине давления при температуре 20ºС;
  • соединительные трубки с ниппелями и уплотнениями.

Сигнализатор изменения плотности элегаза (датчик плотности) имеет три пары контактов, одна из которых, замыкающаяся при значительном снижении плотности элегаза из-за его утечки, предназначена для подачи сигнала (например, светового) о необходимости дозаправки колонн, а две других, размыкающихся при недопустимом падении плотности элегаза, предназначены для блокирования управления выключателем или для автоматического отключения аппарата с одновременной блокировкой включения (что определяется проектом подстанции).

Привод

Приводы выключателей обеспечивают управление выключателем — включение, удержание во включенном положении и отключение. Вал привода соединяют с валом выключателя системой рычагов и тяг. Привод выключателя должен обеспечивать необходимую надежность и быстроту работы, а при электрическом управлении — наименьшее потребление электроэнергии.

В элегазовых выключателя применяют два типа приводов:

  • Пружинный привод:
    • аккумулятором энергии является комплект винтовых цилиндрических пружин
    • управляющим органом является кинематическая система рычагов, кулачков и валов.
  • Пружинно-гидравлический привод:
    • аккумулятором энергии является комплект тарельчатых пружин
    • управляющим органом является гидросистема.

Требования, предъявляемые к выключателям

Требования, предъявляемые к выключателям, заключаются в следующем:

  • надежность в работе и безопасность для окружающих;
  • возможно малое время отключения;
  • по возможности малые габариты и масса;
  • простота монтажа;
  • бесшумность работы;
  • сравнительно невысокая стоимость.

Применяемые в настоящее время выключатели отвечают перечисленным требованиям в большей или меньшей степени. Однако конструкторы выключателей стремятся к более полному соответствию характеристик выключателей выдвинутым выше требованиям.

Требование надежности является одним из важнейших требований, поскольку от надежности выключателей зависит надежность работы энергосистемы, следовательно, и надежность электроснабжения потребителей. Срок службы выключателя составляет не менее 20 лет.

Требование быстродействия следует понимать как возможно малое время отключения цепи при КЗ. Время отключения исчисляется от момента подачи команды на отключение до погасания дуги во всех полюсах. Приблизительно до 1940г. время отключения выключателей напряжением 110 кВ и выше составляло 8-10 периодов. Позднее это время было уменьшено до 6 и 4 периодов. В настоящее время большая часть выключателей 110 кВ и выше имеют время отключения 2 периода. За рубежом построены однопериодные выключатели (20 мс).

Уменьшение времени отключения КЗ (например, от 4 до 2 периодов) весьма желательно по следующим соображениям:

  • увеличивается запас устойчивости параллельной работы станций системы, следовательно, увеличивается пропускная способность линий передачи;
  • уменьшаются повреждения изоляторов и проводов линий электрической дугой;
  • уменьшается опасность прикосновения к заземленным частям РУ;
  • уменьшаются механические напряжения в элементах оборудования, вызванные электродинамическими силами.

Стоимость однопериодных выключателей значительно выше стоимости двухпериодных, однако дополнительные капиталовложения компенсируются увеличением передаваемой мощности по линии. Однопериодные выключатели необходимы также для токоограничивающих устройств, получивших применение в последнее время.

Приводы масляных выключателей

Механизм привода выключателя. Для обеспечения дугогашения подвижный контакт выключателя при отключении должен обладать определенной линейной скоростью (1,5—10 м/с). Как правило, контакты выключателей движутся поступательно, а звенья, передающие усилия контактам от пружин или привода, имеют вращательное движение. Механизм, преобразующий вращательное движение в поступательное, называется прямилом.
Отключающая пружина обычно устанавливается на каждом полюсе и действует на приводную тягу В0Со, стремясь переместить ее слева направо. Во включенном положении четырехзвенник А1С2В2А2 находится в положении, близком к мертвому, которое широко используется для получения необходимой характеристики аппарата. Рассмотрим простейший кривошипно-шатунный механизм (рис. 18.8).

18.8Механизм масляного выключателя 1

а — механизм бакового выключателя; б — кривошипно-шатунный механизм; в — зависимость перемещения контакта от угла поворота а

С рычагом 1 (кривошипом) связан выходной вал выключателя, а с ползуном 3 подвижный контакт. При вращении рычага 1 контакт совершает возвратно-поступательное движение. При угле поворота, близком к 180°, и относительно большом изменении угла Да перемещение АН близко к нулю (звенья 1 и 2 лежат на одной прямой). В этом случае никакая сила, действующая на ползун 3 влево, не может переместить механизм. Это положение получило название мертвого. Использование мертвого положения дает возможность:
1) уменьшить момент или усилия на включающем элементе к концу процесса включения, когда усилия пружин наибольшие и к ним прибавляются электродинамические усилия при включении на КЗ;
2) облегчить регулировку выключателя, так как малому ходу контактов соответствует большой ход включающего рычага или тяги;
3) преодолеть электродинамические силы, действующие на подвижные контакты, которые создают большие усилия на привод;
4) уменьшить усилия отключающих катушек и механизма свободного расцепления.
б) Особенности привода масляных выключателей на напряжение 110 кВ и выше. При включении на существующее КЗ дуга загорается до соприкосновения контактов и существует до момента их соединения. При этом контактные поверхности могут частично расплавляться, что ведет к их привариванию при замыкании. Кроме того, вызванные дугой при включении разложение и испарение масла могут препятствовать ее гашению при последующем отключении. Возникновение дуги при включении создает давление газа внутри ДУ, которое может снижать скорость контакта на самом ответственном участке пути. Как показывают экспериментальные исследования, длительность горения дуги при включении не должна превышать 0,005 с.
В настоящее время применяются ручной, электромагнитный, пружинный, пневматический и пневмогидравлический приводы.
в) Ручные приводы. При ручном приводе используется мускульная сила человека. Уменьшение усилия, необходимого для включения, достигается применением рычажных систем. Эти приводы применяются только для маломощных выключателей с напряжением 6—10 кВ.
Уменьшение обгорания контактов с помощью их облицовки металлокерамикой облегчает включение привода при существующем КЗ и позволяет увеличить номинальный ток включения.
При ручных приводах невозможно дистанционное включение выключателей. Поэтому широкая автоматизация подстанций ограничивает их применение.

г) Электромагнитные приводы. Электромагнитный привод ПС-10 (рис. 18.9) предназначен для выключателей с максимальным статическим моментом на валу не более 400 Н-м. Вал привода через муфту 1 и рычажную передачу соединяется с валом выключателя. Включение производится броневым электромагнитом постоянного тока с якорем 2 и катушкой 3. Применение броневого электромагнита позволяет получить большой ход якоря и большую силу тяги в конце хода, что необходимо для преодоления противодействующих сил выключателя. При наладке ручное включение производится с помощью рычага 4.
На рис. 18.10 изображена серия положений механизма привода. Вал 1 привода связан с валом выключателя. Звено И опирается на упор 8. Этот упор регулируется так, что звенья 10 и 11 находятся в положении, «заваленном» за мертвую точку. В результате центр 0 является неподвижным, так как силы, действующие на него, прижимают звено 11 к упору 8.
При подаче напряжения на включающий электромагнит шток 6 давит на ролик 5 и поворачивает рычаг 2 и звенья 3, 7 в положения, указанные на рис. 18.10,6 и е.

Читать еще:  Какой удлинитель лучше с выключателем или без

18.9 Электромагнитный привод

18.10 Работа механизма расцепителя

Во включенном положении (рис. 18.10, г) ось 02 через ролик 5 опирается на защелку 4. Почти весь момент, развиваемый пружинами выключателя, уравновешивается реакцией защелки 4, действующей па ось 02. Лишь небольшое усилие передается на центр Ot.
При подаче напряжения на электромагнит отключения 9 его шток выводит звенья 10 и 11 из положения, «заваленного» за мертвую точку, и центр О] становится подвижным — механизм получает вторую степень свободы. Под действием пружин выключателя ось 02 соскальзывает с защелки 4, и происходит отключение выключателя (рис. 18.10,(3). В конце отключения все рычаги с помощью специальных пружин возвращаются в положение, показанное на рис. 12, а.
Механизм позволяет произвести отключение выключателя не только при полностью включенном положении, но и практически при любом промежуточном. Для уменьшения габаритных размеров электромагнитов плотность тока в обмотках достигает 50 А/мм2. Поэтому схема управления автоматически отключает электромагниты в конце включения и отключения.
При включении на существующее КЗ привод должен включить выключатель только 1 раз, так как при следующих друг за другом включениях ДУ оказывается неподготовленным к отключению тока КЗ. Поэтому предусматривается механическая блокировка против многократного включения. Если после выключения остается поданным сигнал на включение, включающий электромагнит срабатывает. Но в этот момент ролик 5 не опирается на шток 6, механизм привода не сложился еще для включения. Поэтому электромагнит включается вхолостую (рис. 18.10, е).
Привод обеспечивает нормальную работу при напряжении на включающем электромагните в пределах 80—110, а для отключающего электромагнита 65—120 % номинального значения.
Выбор привода и оценка его работоспособности проводятся для наиболее тяжелых режимов эксплуатации. При расчетах рассматривается случай включения на КЗ при пониженном напряжении на электромагнитах и максимальной температуре окружающей среды (сопротивление обмоток максимально). Электромагнитные приводы характеризуются простотой конструкции и эксплуатации, высокой надежностью, согласованностью характеристик привода и противодействующих сил выключателя. Недостатками этих приводов являются большое время включения (для мощных выключателей до 1 с), большое потребление энергии, необходимость мощных аккумуляторных батарей для питания электромагнитов. Питающие кабели должны иметь значительное сечение. Вследствие указанных недостатков электромагнитные приводы рекомендуются для выключателей небольшой мощности.

18.11 Пружиннно-грузовой привод

д) Пружинные приводы. В пружинном приводе энергия, необходимая для включения, запасается в мощной пружине, которая заводится либо от руки, либо с помощью двигателя малой мощности (менее 1 кВт),
Особенностью тяговой характеристики привода является уменьшение усилия, развиваемого включающими пружинами к концу хода, вследствие уменьшения их деформации. Для уменьшения такого эффекта начальная избыточная энергия пружин преобразуется в кинетическую энергию специального груза. К концу включения, когда скорость падает, энергия, накопленная в грузе, передается механизму выключателя.
Широко распространен универсальный пружинно-грузовой привод ПП-67 (рис. 18.11). Включающие пружины 1 растягиваются с помощью электродвигателя 3, редуктора 2 и зубчатой передачи 6. Пружины соединяются с валом привода через систему рычагов 4 и 5, которые позволяют получить необходимый момент, несмотря на уменьшение силы пружин к концу хода. При взведении привода секторообразный груз 7 поворачивается на 180° в верхнее положение. При включении груз создает дополнительный вращающий момент, который достигает наибольшего значения после поворота вала примерно на 90°.
Пружинные приводы позволяют осуществить цикл АПВ. После включения выключателя автоматически производится взведение включающих пружин и привод подготавливается к повторному включению. Время включения выключателя с таким приводом составляет 0,2—0,35 с.
Привод снабжен электромагнитными элементами защиты, которые реагируют либо на ток, либо на напряжение. Эти элементы воздействуют на расцепляющее устройство механизма привода.
Пружинный привод не требует мощной аккумуляторной батареи и связанных с ней затрат, что является его преимуществом по сравнению с электромагнитным приводом. По сравнению с пневматическим и гидропневматическим пружинный привод более прост по конструкции.

18.12 Пневматический привод

В нем отсутствуют резервуары со сжатым воздухом или газом, компрессоры, сложная пневматическая или гидравлическая системы управления.
Благодаря этим преимуществам можно ожидать широкого распространения пружинных приводов в маломасляных выключателях на напряжения вплоть до 500 кВ. Необходимая зависимость тягового усилия от хода контактов может быть получена применением кулачкового механизма и специальных маховиков, позволяющих более полно использовать энергию включающих пружин.
е) Пневматические приводы. На рис. 18.12 показан пневматический привод для мощных баковых выключателей напряжением 220 кВ.
При открытии клапана 1 сжатый воздух при давлении 0,8—1 МПа воздействует на поршень 2. Шток поршня 3 через ролик 5 производит включение выключателя. После включения полость под поршнем сообщается с атмосферой, и он возвращается в начальное положение под действием пружины 4.
Пневмопривод широко применяется для маломасляных выключателей. Бак со сжатым воздухом и привод встраиваются в конструкцию выключателя. Сжатый воздух подводится от централизованной компрессорной установки.

18.13 Пневмогидравлический привод 1

Пневматический привод имеет ряд преимуществ перед электромагнитным: высокое быстродействие (время включения 0,25 с для мощных выключателей), отсутствие мощных аккумуляторных батарей и др. В настоящее время пневмоприводы начинают использоваться для включения разъединителей и других аппаратов. Для надежной работы привода необходимы очистка и сушка воздуха .
ж) Пневмогидравлический привод. В пневмогидравлическом приводе (рис. 18.13) аккумулирование энергии, необходимой для включения, осуществляется за счет сжатия газа под большим давлением. Для исключения утечки и растворения газ заключен в эластичном резиновом баллоне, размещенном в стальном сосуде 1. Обычно в пневмогидравлических приводах используется азот.
При работе насоса 3 масло нагнетается в сосуд 1 и резиновый баллон 6 с азотом сжимается. Давление доводится до номинального значения 15 МПа, после чего насос 3 останавливается.
Управление приводом осуществляется с помощью золотникового клапана 5, который приводится в действие электромагнитом 7. При левом положении клапана (рис. 18.13, а) масло подается на верхнюю поверхность поршня. Нижняя поверхность поршня сообщается с маслом, находящимся под атмосферным давлением в резервуаре 2. При переходе золотника в правое положение (рис. 18.13,6) масло под давлением будет подано на нижнюю поверхность поршня, поршень переместится вверх, и произойдет включение выключателя. Масло из верхней части цилиндра свободно перетекает в резервуар 2.
Привод применяется и в маломасляных выключателях. В этом случае главный цилиндр 4, связанный с контактным механизмом, находится под высоким потенциалом. Управление осуществляется с помощью двух маслопроводов, связывающих главный цилиндр с остальной частью привода. Такая система позволяет отказаться от рычажной передачи, значительно облегчить подвижную часть выключателя, а следовательно, уменьшить необходимое усилие отключающих пружин. Для наладочных работ с выключателями используется ручной насос 5.
Нормальная работа пневмогидравлического привода возможна, если вязкость жидкости не меняется с температурой.
Пневмогидравлический привод обладает высоким быстродействием, большой надежностью, удобством в эксплуатации. По своим характеристикам он превосходит пневматический привод. Пневмогидравлический привод найдет применение для мощных выключателей с напряжением 110 кВ и выше.

studopedia.org — Студопедия.Орг — 2014-2021 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.002 с) .

0 0 голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты