Oncool.ru

Строй журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Общие данные по автоматическим выключателям

Автоматический ввод резерва (АВР). Типы и характеристики.

Автоматический ввод резерва

Автоматический ввод резерва — способ обеспечения резервным электроснабжением нагрузок, подключенных к системе электроснабжения, имеющей не менее двух питающих вводов и направленный на повышение надежности системы электроснабжения. Заключается в автоматическом подключении к нагрузкам резервных источников питания в случае потери основного.

В наше время перебои с электроснабжением не редкость. И хотя в нашей стране достаточно электроэнергии, но проблема бесперебойного электроснабжения остается. Решить ее поможет установка дополнительных источников электроэнергии, таких как генератор, аккумулятор, а так же иные альтернативные источники электропитания.

Согласно ПУЭ все потребители электрической энергии делятся на три категории:

I категория — к потребителям этой группы относятся те, нарушение электроснабжения которых может повлечь за собой опасность для жизни людей, значительный материальный ущерб, опасность для безопасности государства, нарушение сложных технологических процессов и пр.

II категория — к этой группе относят электроприёмники, перерыв в питании которых может привести к массовому недоотпуску продукции, простою рабочих, механизмов, промышленного транспорта.

III категория — все остальные потребители электроэнергии.

Таким образом, кроме неудобств в повседневной жизни человека, длительный перерыв в электропитании может привести к угрозе жизни и безопасности людей, материальному ущербу и другим, не менее серьезным последствиям.Бесперебойное питание можно реализовать, осуществив электропитание каждого потребителя от двух источников одновременно (для потребителей I категории так и делают), однако подобная схема имеет ряд недостатков:

  • Токи короткого замыкания при такой схеме гораздо выше, чем при раздельном питании потребителей
  • В питающих трансформаторах выше потери электроэнергии
  • Релейная защита сложнее, чем при раздельном питании
  • Необходимость учета перетоков мощности вызывает трудности, связанные с выработкой определенного режима работы системы
  • В некоторых случаях не получается реализовать схему из-за того, что нет возможности осуществить параллельную работу источников питания из-за ранее установленной релейной защиты и оборудования

В связи с этим возникает необходимость в раздельном электроснабжении и быстром восстановлении электропитания потребителей. Решение этой задачи и выполняет Автоматический ввод резерва.

Автоматический ввод резерва может подключить отдельный источник электроэнергии (генератор, аккумуляторная батарею) или включить выключатель, разделяющий сеть, при этом перерыв питания может составлять всего 0.3 — 0.8 секунд.

При проектировании систем гарантированного электроснабжения, предназначенных для обеспечения работы электроприемников I категории и особой группы первой категории надежности, возникает задача выбора типа устройства автоматического ввода резерва (АВР).

Автоматический ввод резерва

Автоматический ввод резерва (АВР) — метод защиты, предназначенный для бесперебойной работы сети электроснабжения. Реализован с помощью автоматического подключения к сети других источников электропитания в случае аварии основного источника электроснабжения.

Основные требования, предъявляемые к устройствам при построении системы гарантированного электроснабжения

  1. Как известно (см. ПУЭ), электроприемники первой категории надежности должны обеспечиваться электроэнергией от двух независимых взаимно резервирующих источников питания, а для электроснабжения особой группы электроприемников первой категории должно предусматриваться дополнительное питание от третьего независимого источника.
  2. В обоих случаях в качестве одного из резервирующих источников питания может использоваться автоматизированная дизель-электрическая электростанция, что требуется учитывать при выборе конкретной схемы АВР.
  3. При использовании АВР должны быть приняты меры, исключающие возможность замыкания между собой двух независимых источников питания друг на друга, причем в дополнение к требованиям ПУЭ службы энергонадзора, как правило, требуют наличия не только электрической, но и механической блокировки коммутирующих элементов.
  4. Максимальное время переключения резерва зависит от характеристик потребителей электроэнергии, но при наличии в системе источников бесперебойного питания (ИБП) не имеет определяющего значения. Для исключения ложных срабатываний при переключениях АВР на стороне высокого напряжения должна быть предусмотрена возможность регулировки задержки переключения при неисправностях одной из сетей.
  5. Важное значение имеет наличие регулировки порогов срабатывания АВР в диапазоне контролируемого напряжения для каждого ввода. Так, например, в случае подключения к выходу АВР ИБП согласование между собой диапазонов входных напряжений обоих устройств позволяет обеспечить своевременное переключение на резервную сеть при отклонении напряжений основной питающей сети за заданные значения и тем самым исключить длительную работу ИБП на батареях при исправной резервной сети.
  6. Желательно наличие индикации состояния и возможности ручного управления АВР.

Преимущества и недостатки различных типов АВР с позиций перечисленных требований

Тиристорные (электронные) АВР

Статический переключатель нагрузки — (англ.: LTM — Load Transfer module (модуль переключения нагрузки)). В этом типе АВР в качестве силового коммутирующего элемента используются мощные тиристоры, обеспечивающие практически нулевое время переключения между двумя независимыми вводами.

Преимущества:

Основное и очень значимое преимущество: практически нулевое время переключения между вводами (возможно применения для переключения между ИБП (источник бесперебойного питания) разной мощности, разных производителей). Переключение между вводами никак не сказывается на электроснабжении ответственных потребителей электроэнергии (серверы, компьютерное оборудование, устройства автоматики, телекоммуникационное оборудование и т.д.). При использовании LTM в схемах электроснабжения критически важных объектов или ответственных потребителей можно существенно сэкономить на применении ИБП, ДГА и других устройств независимого электроснабжения.

Недостатки:

Основной недостаток это очень высокая стоимость по сравнению с механическими АВР (на контакторах и рубильниках).

Электромеханические АВР на контакторах

АВР на контакторах получили наиболее широкое применение, в основном, благодаря низкой стоимости комплектующих. В основе щита АВР на контакторах обычно применяются два контактора с взаимной электрической или электромеханической блокировкой и реле контроля фаз.

В самых дешевых вариантах АВР на контакторах используется обычное реле, контролирующее наличие напряжения только на одной фазе, без контроля качества электроэнергии (частота, напряжение). При пропадании напряжения на одной фазе, АВР на контакторах переключает нагрузку на другой (резервный) ввод электроэнергии.

При использовании качественных полнофункциональных реле контроля фаз (контроль 3-х фаз: напряжение, частота, временные задержки на перевод нагрузки, возможность программирования диапазонов и задержек) и применении механической блокировки (предотвращает одновременную подачу электропитания с двух вводов) АВР на контакторах становится довольно качественным и законченным изделием.

Преимущества:

Дешевая стоимость, выполняет защитные функции (высокий ток, короткое замыкание).

Недостатки:

Отсутствие возможности ручного переключения при неисправности АВР, низкая ремонтопригодность (при отказе одного из элементов АВР, требуется демонтаж и ремонт всего изделия), длительное время переключения (от 16 до 120 мс). Небольшое количество циклов срабатывания. Вероятность залипания контактов контактора.

Электромеханические АВР на автоматических выключателях с электроприводом

Такие АВР несколько уступают предыдущим по быстродействию и также позволяют осуществить механическую и электрическую блокировки при двухвходовой схеме.

Недостатки:

Более сложная схема и более высокую стоимость этих устройств.

Электромеханические АВР на управляемых переключателях с электроприводом

В основе лежит рубильник (переключатель с нулевым средним положением, приводимый в действие моторным приводом. Привод управляется контроллером, который является частью автоматического рубильника или может устанавливаться отдельно).

Преимущества:

Высокая ремонтопригодность: автоматический рубильник состоит из трех основных элементов: рубильник (переключатель), моторный привод, контроллер. Выход из строя рубильника практически невозможен. При выходе из строя моторного привода или контроллера (реле контроля фаз), возможна их замена без демонтажа щита АВР и без демонтажа самого рубильника. При снятом моторном приводе и контроллере возможно переключение нагрузки в ручном режиме. Легкая сборка щита АВР. Для сборки щита требуется установить рубильник на монтажную плату, никакие дополнительные силовые или контрольные соединения не используются. Высокая надежность: за счет применения малого количества элементов и за счет использования в качестве силового коммутирующего устройства рубильника.

Недостатки:

Относительно высокая стоимость (на токи до 125 А). Отсутствие защитных функций

Автоматический ввод резерва и дополнительные функции

У всех рассмотренных типов АВР при необходимости могут быть реализованы функции контроля верхнего и нижнего уровня напряжений, введены элементы регулировки задержек и схемы управления работой ДЭС.

На основании выше сказанного, можно сделать следующие выводы:

Для системы гарантированного электроснабжения, имеющей два независимых ввода электроснабжения:
  • Целесообразно использовать автоматический ввод резерва электромеханического типа, которые могут быть выполнены на контакторах, управляемых автоматических выключателях или управляемых переключателях с электроприводом
  • Схема АВР должна предусматривать регулировки задержек переключения, порогов срабатывания во всем диапазоне входных напряжений
  • Желательно наличие механической блокировки, исключающей возможность замыкания двух входов друг на друга
  • При использовании в качестве резервного источника дизель-электрической станции схема АВР должна содержать необходимые элементы для управления ее работой (автоматический пуск и останов ДЭС, возможность регулировки различных временных параметров, в том числе задержки обратного переключения на сеть, времени работы ДЭС на холостом ходу для охлаждения и т.п.)
Для системы гарантированного электроснабжения, имеющей три независимых ввода электроснабжения:
  • Трехвходовая схема может быть реализована путем последовательного соединения двух двухвходовых АВР, при этом каждый из этих аппаратов должен быть выполнен с учетом требований, указанных выше
  • Автоматический ввод резерва на контакторах и управляемых автоматических выключателях может быть реализован как трехвходовый (что уменьшит суммарную стоимость оборудования на 20-30% за счет меньшего числа коммутирующих элементов), однако при этом невозможно обеспечить полноценную механическую блокировку между тремя входами

Практические рекомендации, которые подтверждены в различных проектах

Система гарантированного электроснабжения мощностью до 100 кВА, имеющая в своем составе ИБП и работающая от двух сетевых входов.

Читать еще:  Беспроводной выключатель с пультом как подключить

В этом случае могут быть предложены автоматические коммутаторы серии АК фирмы «ППФ БИП-сервис», представляющие собой АВР контакторного типа. Эти аппараты имеют:

  • механическую и электронную блокировку контакторов
  • автоматические выключатели на каждом входе, обеспечивающие защиту сетей от перегрузок и коротких замыканий нагрузки
  • регулировку диапазона контролируемых напряжений
  • контроль правильности чередования фаз; возможность установки приоритета любого из входов
  • индикацию режима работы и состояния входов
  • регулировку задержки времени переключения

Такой перечень функциональных возможностей позволяет успешно применять коммутаторы серии АК в системах, содержащих ИБП.

Система гарантированного электроснабжения мощностью более 100 кВА, имеющая в своем составе ИБП и работающая от двух сетевых входов.

Для таких систем более целесообразно использовать автоматические коммутаторы серии АКП, которые представляют собой АВР на управляемых переключателях с электроприводом.

Эти аппараты имеют все перечисленные выше особенности, но кроме того, позволяют управлять переключением входов вручную при любом напряжении или его отсутствии. Переключатели оснащены механическими замками, позволяющими заблокировать их в любом из возможных состояний, что может быть в некоторых случаях важно для потребителя.

Система гарантированного электроснабжения, работающая от одного сетевого ввода и имеющая в качестве резервного питания ДЭС.

Для такой конфигурации может быть применена панель переключения нагрузки типа TI. Также представляющая собой АВР контакторного типа, но имеющая в своем составе все необходимые элементы для управления автоматизированной ДЭС. Изделия этого типа, как правило, рекомендуются фирмами — изготовителями дизель-генераторов, в частности, фирмой F.G.Wilson.

Система гарантированного электроснабжения, имеющая в своем составе ИБП и работающая от двух сетевых входов и резервной ДЭС.

Здесь могут быть предложены следующие варианты построения АВР:

  1. каскадное соединение АВР серии АК или АКП и панели переключения TI
  2. трехвходовой коммутатор серии АК с функцией управления ДЭС
  3. трехвходовой коммутатор серии АКП с функцией управления ДЭС

Система гарантированного электроснабжения

Схемы трехвходовых АВР могут быть экономически более привлекательны. В то же время следует повторно отметить то обстоятельство, что для трехвходовой контакторной схемы невозможна полноценная механическая блокировка всех входов между собой, что определяется конструктивными особенностями контакторов.

В связи с этим в трехвходовых контакторных АВР целесообразно установить электрическую и механическую блокировку между ДГ и каждым из сетевых вводов. А между сетевыми вводами предусмотреть только электрическую блокировку. Именно по такому принципу выполнены трехвходовые коммутаторы серии АК.

Схема трехвходового коммутатора серии АКП, как отмечалось ранее, исключает возможность замыкания входов между собой за счет конструкции переключателей и одновременно дешевле, чем два отдельных каскадно соединенных АВР.

Буквенное обозначение УЗО и дифавтоматов на схемах

Согласно ГОСТ 2.710-81 всем элементам на электрической схеме должно присваиваться буквенное обозначение с указанием порядкового номера. Но этот ГОСТ не содержит схем и обозначений УЗО и дифференциальных автоматов.

Иногда на схемах встречаю Q для УЗО и QF для АВДТ. Q — выключатель или рубильник, F — защитный.

Чаще применяется другой вариант — QD для УЗО и QFD для дифференциального автомата. D означает дифференцирующий. В некоторых схемах буква D стоит после порядкового номера, например, QF1D.

Но не означает дифференциальный.

УЗО обозначаем просто как Q. Дифф просто QF.

Графическое обозначение коммутационных устройств на схемах позволяет с точностью их идентифицировать, смысла выдумывать что-то еще нет.

Добрый день, Сергей,
считаю, что обозначение «QD» и «QFD» для для УЗО и АВДТ некорректно, должно быть, в любом случае, «QF», т. е. «Выключатель автоматический», что полностью соответствует ГОСТ 2.710-81.
Буква (любая) может быть в составе цифрового порядкового номера элемента, при этом она никак не отображает функциональное назначение элемента.

Данный вопрос мучит меня долгие годы — как же правильнее, и вместе с тем лучше? ))
«Обзывал» и так, и этак (обоими способами из вышеописанных).
Склоняюсь, всё-таки, к способу (и правоте) Юрия Михайловича.

Вернемся к первоисточнику:

ГОСТ 2.710-81 2. Примеры двухбуквенных кодов, таблица 2:

Первая буква Q — Выключатели и разъединители в силовых цепях (энергоснабжение, питание оборудования и т.д.)

Примеры видов элементов:
Выключатель автоматический QF
Короткозамыкатель QK
Разъединитель QS
————————-

Понятно, что таблица содержит только примеры, но не ограничивает нас, поэтому существуют и другие варианты:

Выключатель нагрузки QW
Выключатель секционный QB
Выключатель шиносоединительный QA
Отделитель QR
Короткозамыкатель QN
Разъединитель, Рубильник QS
Разъединитель заземляющий QSG
——————————-

Согласно ГОСТ 9098-78 (Выключатели автоматические низковольтные. Общие технические условия) УЗО не является автоматическим выключателем, так как по видам расцепителей АВ бывают только:
— с максимальным расцепителем тока (электромагнитным и/или тепловым);
— с независимым расцепителем;
— с минимальным или нулевым расцепителем напряжения.
—————————

АВДТ не входят в этот ГОСТ, но для них есть отдельный ГОСТ Р 51327.1-2010 (МЭК 61009-1-2006) «Выключатели автоматические, управляемые дифференциальным током, бытового и аналогичного назначения со встроенной защитой от сверхтоков. Часть 1. Общие требования и методы испытаний»
—————————

Определение УЗО и АВДТ я нашёл в ГОСТ ГОСТ Р 53312—2009:

УЗО — устройство защитного отключения, управляемое дифференциальным током; УЗО-Д: Механический коммутационный аппарат или совокупность элементов, которые при достижении (превышении) дифференциальным током заданного значения при определенных условиях эксплуатации должны вызвать размыкание контактов.

АВДТ — автоматический выключатель, управляемый дифференциальным током: Механический коммутационный аппарат, предназначенный для включения, проведения и отключения токов при нормальных условиях работы, а также разъединения контактов в случае, когда значение дифференциального тока достигает заданной величины в определенных условиях.
———————

Т.е. можно сделать вывод, что УЗО не является АВ, поэтому не соответствует коду QF Выключатель автоматический по ГОСТ 2.710-81 2.

Много букофф получается, ну да ладно, напишу.
ГОСТ 53312—2009 в настоящее время не действует.
Название действующего в настоящее время ГОСТ Р 51326.1-99 (МЭК 61008-1-96), уже содержит определение: «Выключатели автоматические, управляемые дифференциальным током, бытового и аналогичного назначения без встроенной защиты от сверхтоков.»
Читаем определения:
3.3.1 автоматический выключатель, управляемый дифференциальным током: Механический коммутационный аппарат, предназначенный для включения, проведения и отключения токов при нормальных условиях работы, а также разъединения контактов в случае, когда значение дифференциального тока достигает заданной величины в определенных условиях.

3.3.2 автоматический выключатель, управляемый дифференциальным током, без встроенной защиты от сверхтоков (ВДТ): Управляемый дифференциальным током выключатель, не предназначенный для выполнения функций защиты от сверхтоков.

3.3.3 автоматический выключатель, управляемый дифференциальным током, со встроенной защитой от сверхтоков (АВДТ): Управляемый дифференциальным током автоматический выключатель, предназначенный для выполнения функций защиты от сверхтоков.

Существует ещё один, действующий, ГОСТ IEC 61009-1-2014: «Выключатели автоматические, срабатывающие от остаточного тока, со встроенной защитой от тока перегрузки, бытовые и аналогичного назначения.»
Данный ГОСТ содержит аналогичные определения:
3.3.5 автоматический выключатель, управляемый дифференциальным током (residual current operated circuit-breaker): Контактный коммутационный аппарат, предназначенный для включения, проведения и отключения токов при нормальных условиях эксплуатации, а также размыкания контактов в том случае, когда значение дифференциального тока достигает заданной величины в определенных условиях.

Читать еще:  Монтаж выключателя цвет проводов

3.3.6 автоматический выключатель, управляемый дифференциальным током, без встроенной защиты от сверхтоков; ВДТ [residual current operated circuit-breaker without integral overcurrent protection (RCCB)]: Управляемый дифференциальным током автоматический выключатель, не предназначенный для выполнения функций защиты от токов перегрузки и/или токов короткого замыкания.

3.3.7 автоматический выключатель, управляемый дифференциальным током, со встроенной защитой от сверхтока; АВДТ [residual current operated circuit-breaker with integral overcurrent protection (RCBO)]: Управляемый дифференциальным током автоматический выключатель, предназначенный для выполнения функций защиты от токов перегрузки и/или токов короткого замыкания.

Исходя из этого, можно считать, что обозначение «QF» для ВДТ и АВДТ соответствует ГОСТ 2.710-81.

«УЗО-Д», в соответствии с ГОСТ 31603-2012 (IEC 61540:1997), это: (цитата) «Устройства защитного отключения переносные бытового и аналогичного назначения, управляемые дифференциальным током . » (конец цитаты). Данное устройство, в соответствии с тем же ГОСТ, может быть выполнено в виде совокупности различных элементов. В этом случае, обозначение на схеме буквами «QF» или «Q» будет некорректным.

ЭСИС Электрические системы и сети

Информационно-справочный электротехнический сайт

Диспетчерские наименования энергетических объектов

Диспетчерские наименования энергетических объектов

Общие положения

Целью данной работы является формулировка правил, используемых при определении диспетчерских наименований энергетических объектов.
Диспетчерские наименования – это наименования объектов, используемые в оперативных переговорах и записях.
Диспетчерские наименования (далее по тексту – ДН) должны однозначно определять оборудование в пределах определенного распределительного устройства.
В диспетчерское наименование должны входить сокращенное буквенно-цифровое обозначение оборудования, класс напряжения и имя присоединения, к которому относится данное оборудование и информация, конкретизирующая положение элемента в схеме.
Порядок выполнения диспетчерских наименований должен быть указан в местных инструкциях на предприятиях. Поскольку на разных предприятиях правила исполнения ДН могут отличаться друг от друга, то в данном документе приводятся общие правила для нанесения диспетчерских наименований, которые могут отличаться от правил, принятых на местах.
Диспетчерские наименования определяют элементы схемы в пределах некоторого распредустройства. Это может быть подстанция, ОРУ, и т.д.
Если операции проводятся одновременно в нескольких распредустройствах, в оперативных переговорах и записях необходимо перед диспетчерским наименованием
использовать имя распределительного устройства, в котором находится оборудование. Например – ОРУ-500: ТР 500 кВ АТ-2.

Термины и определения

Присоединение – Электрическая цепь (оборудование и шины) одного назначения, наименования и напряжения, присоединенная к шинам РУ, генератора, щита, сборки и находящаяся в пределах электростанции, подстанции и т.п. Электрические цепи разного напряжения одного силового трансформатора (независимо от числа обмоток), одного двухскоростного электродвигателя считаются одним присоединением. В схемах многоугольников, полуторных и т.п. схемах к присоединению линии, трансформатора относятся все коммутационные аппараты и шины, посредством которых эта линия или трансформатор присоединены к РУ
Ключевые элементы присоединения – элементы, лежащие в основе присоединения, их наименование используется в наименовании присоединения.

Правило группировки – правило, по которому элементы на схеме группируются в присоединение.

Простое присоединение – присоединение, содержащее один элемент, образующий присоединение.

Сложное присоединение – присоединение, в котором находятся несколько элементов, образующих присоединение (присоединения нескольких фидеров 6-10 кВ на одном выключателе, возможно ТСН + фидеры, и т.п.).

Соединение – группа соединенных между собой элементов и ограниченная со всех сторон шинами

Простая цепь – цепь элементов схемы, не имеющая ветвлений.

Используемые сокращения

ДН – Диспетчерское наименование

Составляющие диспетчерского наименования

Диспетчерское наименование состоит из следующих составляющих:

  • Сокращенное буквенно-цифровое обозначение элемента.
  • Класс напряжения ( например 110 кВ)
  • Имя присоединения
  • Информация, конкретизирующая положение элемента в схеме – («Сторона» элемента схемы, секция шин, с которой соединен элемент, для СВ – соединяемые секции).

Буквенно-цифровое обозначение элемента

В диспетчерском наименовании объекта на первом месте стоит сокращенное буквенно-цифровое обозначение типа элемента, например :

  • АТ-1 автотрансформатор;
  • СК–1 синхронный компенсатор;
  • ТСН-2 – трансформатор собственных нужд.

В сокращенное буквенное обозначение элемента может входить информация не только о типе элемента, но еще и о функциональном предназначении элемента в присоединении. (Понятие присоединения дано Межотраслевых правилах по охране труда* и помещено в раздел «Термины и определения»). Например: разъединитель шинный** именуется как ШР, линейный разъединитель – ЛР и т.д.
К сокращенному буквенному обозначению элемента через дефис добавляется порядковый номер этого элемента. Порядковые элементы именуются сквозной нумерацией для определенного типа элементов в пределах определенного распредустройства (подстанция, РУСН-10, РУСН-0,4 и т.д).
Например – ТСН-1, ТСН-2, ТСН-3 и т.д., Т-1, Т-2, Т-3 и т.д. Нумерация элементов схемы определяется персоналом предприятия.
В случае, если один объект разделен конструктивно на несколько элементов, или общие правила наименования элемента не обеспечивают уникальности его наименования, то к цифре буквенно-цифрового обозначения добавляется буквенный индекс. Например – ТХН-1 А 10 кВ, ТХН-1 Б 10 кВ, РШ 1 сек. А 220 кВ ОШВ.

*Межотраслевые правила по охране труда при эксплуатации электроустановок ПОТРМ – 016 –2001 (РД 153-34.0-03.150-00)

**Элементы схем с вынесенным в ДН функциональным назначением приведены в таблице Функционально-определенные элементы схем.

Класс напряжения

Если у элемента схемы один класс напряжения (например – разъединитель, заземляющий нож, разрядник, выключатель) то в ДН указывается этот класс напряжения.
Если у элемента схемы несколько классов напряжения – например трансформатор, то для таких элементов схемы в ДН указывается наивысший класс напряжения. Пример – АТ-1 500 кВ, ТСН-1 10 кВ.
Иногда для главных объектов схемы не указывают класс напряжения. Поскольку этих объектов не много, и они часто используются в переговорах и записях, то информация о классе напряжения этих элементов в диспетчерское наименование на некоторых предприятиях не включается. Как правило это главные трансформаторы, генераторы, энергоблоки.

Напряжение указывается в киловольтах с указанием единиц измерения: 110 кВ, 35 кВ, 0,4 кВ, 0,23 кВ. Напряжение по роду может быть как переменное так и постоянное.

Имя присоединения

В диспетчерское наименование включается имя присоединения.
По наименованию присоединения в ДН можно определить принадлежность элемента схемы к тому или иному присоединению.
Имя присоединения определяется по буквенно-цифровому обозначению ключевого элемента схемы, образующего присоединение. Например: трансформаторный разъединитель 10 кВ автотрансформатора АТ-1 будет называться ТР 10 кВ АТ-1. АТ-1 в этом случае это ключевой элемент присоединения, дающий наименование присоединению.
Перечень элементов, образующих присоединение, приведен в таблице «Элементы схемы, образующие присоединение». В случае, если элемент образует присоединение, то в его имени уже включено имя присоединения, и дополнительно оно больше не включается.
В случае, если в присоединении несколько элементов, образующих присоединение, например – несколько фидеров, присоединенных к одному выключателю, то имя присоединения включает в себя информацию о всех фидерах, например :
если фидеры называются 123-А, 234 Б, 234-В, то имя присоединения будет
ф. 123-А + 234-Б+В.
Более подробно о выделении присоединений на схемах указано в разделе «Как выделить присоединения на схемах».

«Сторона» элемента схемы

Для определенных элементов схемы в диспетчерском наименовании необходимо указывать дополнительную информацию о месте установки элемента. Это относится к элементам, являющимся составной частью других элементов схемы (заземляющие ножи), а также шинные разъединители. Например: существуют разъединители, выполненные конструктивно с заземляющими ножами. Заземляющие ножи располагаются по обе стороны разъединителя. Каждый ЗН заземляет свою сторону разъединителя.
Наименование заземляющего ножа будет состоять в этом случае из
префикса ЗН, ДН разъединителя, на котором установлен ЗН, и указания, в какую сторону включен заземляющий нож. «Сторона», в которую включается заземляющий нож, это ближайший к ЗН в электрической цепи элемент схемы в сторону, противоположную разъединителю, на котором установлен ЗН. Пример:
ЗН РЛ-220 кВ ВЛ Тяговая – Пущино в стор. ВЛ,
ЗН РЛ-220 кВ ВЛ Тяговая – Пущино в стор. МВ.

Читать еще:  Электронный выключатель постоянного тока

после слов «в стор.» добавляется буквенное сокращение типа элемента.
Поскольку операция заземления является ответственной операцией, необходима предельная точность в указании места, куда устанавливается заземление.
Но в некоторых предприятиях используют не однозначные правила именования заземляющих ножей, не указывая, в какую сторону установлен заземляющий нож, если он единственный на разъединителе. Уникальность наименования в этом случае соблюдается, но меняется правило наименования заземляющих ножей и точность диспетчерского наименования.
Аналогично именуются и короткозамыкатели на отделителях.
При наименовании шинных разъединителей необходимо в ДН конкретизировать шину, с которой соединен разъединитель. например – ШР 1 сек. 110 кВ ВЛ Кучино-Трубино.

В случае, если элемент схемы образует присоединение, то его диспетчерское наименование состоит из сокращенного буквенно-цифрового обозначения, которое будет являться наименованием присоединения, и класса напряжения.
В случае, если элемент схемы не образует присоединения, то его ДН состоит из сокращенного буквенно-цифрового обозначения, класса напряжения, наименования присоединения. Существуют отклонения от этих правил для функционально определенных элементов схем. Эти правила описаны ниже.

Диспетчерские наименования функционально-определенных элементов схем

Перечень функционально-определенных элементов схем приведен в таблице .

Таблица. функционально-определенные элементы схем.

Конечный автомат: теория и реализация

Конечный автомат — это некоторая абстрактная модель, содержащая конечное число состояний чего-либо. Используется для представления и управления потоком выполнения каких-либо команд. Конечный автомат идеально подходит для реализации искусственного интеллекта в играх, получая аккуратное решение без написания громоздкого и сложного кода. В данной статье мы рассмотрим теорию, а также узнаем, как использовать простой и основанный на стеке конечный автомат.

Мы уже публиковали серию статей по написанию искусственного интеллекта при помощи конечного автомата. Если вы еще не читали эту серию, то можете сделать это сейчас:

Примечание автора Хоть в статье используются ActionScript 3 и Flash, вы с легкостью можете писать на удобном для вас языке.

Что такое конечный автомат?

Конечный автомат (или попросту FSM — Finite-state machine) это модель вычислений, основанная на гипотетической машине состояний. В один момент времени только одно состояние может быть активным. Следовательно, для выполнения каких-либо действий машина должна менять свое состояние.

Конечные автоматы обычно используются для организации и представления потока выполнения чего-либо. Это особенно полезно при реализации ИИ в играх. Например, для написания «мозга» врага: каждое состояние представляет собой какое-то действие (напасть, уклониться и т. д.).

Описание состояний автомата

Конечный автомат можно представить в виде графа, вершины которого являются состояниями, а ребра — переходы между ними. Каждое ребро имеет метку, информирующую о том, когда должен произойти переход. Например, на изображении выше видно, что автомат сменит состояние «wander» на состояние «attack» при условии, что игрок находится рядом.

Планирование состояний и их переходов

Реализация конечного автомата начинается с выявления его состояний и переходов между ними. Представьте себе конечный автомат, описывающий действия муравья, несущего листья в муравейник:

Описание состояний интеллекта муравья

Отправной точкой является состояние «find leaf», которое остается активным до тех пор, пока муравей не найдет лист. Когда это произойдет, то состояние сменится на «go home». Это же состояние останется активным, пока наш муравей не доберется до муравейника. После этого состояние вновь меняется на «find leaf».

13 сентября – 9 октября, Санкт-Петербург и онлайн, Беcплатно

Если состояние «find leaf» активно, но курсор мыши находится рядом с муравьем, то состояние меняется на «run away». Как только муравей будет в достаточно безопасном расстоянии от курсора мыши, состояние вновь сменится на «find leaf».

Обратите внимание на то, что при направлении домой или из дома муравей не будет бояться курсора мыши. Почему? А потому что нет соответствующего перехода.

Описание состояний интеллекта муравья. Обратите внимание на отсутствие перехода между «run away» и «go home»

Реализация простого конечного автомата

Конечный автомат можно реализовать при помощи одного класса. Назовем его FSM. Идея состоит в том, чтобы реализовать каждое состояние как метод или функцию. Также будем использовать свойство activeState для определения активного состояния.

Всякое состояние есть функция. Причем такая, что она будет вызываться при каждом обновлении кадра игры. Как уже говорилось, в activeState будет храниться указатель на функцию активного состояния.

Метод update() класса FSM должен вызываться каждый кадр игры. А он, в свою очередь, будет вызывать функцию того состояния, которое в данный момент является активным.

Метод setState() будет задавать новое активное состояние. Более того, каждая функция, определяющая какое-то состояние автомата, не обязательно должна принадлежать классу FSM — это делает наш класс более универсальным.

Использование конечного автомата

Давайте реализуем ИИ муравья. Выше мы уже показывали набор его состояний и переходов между ними. Проиллюстрируем их еще раз, но в этот раз сосредоточимся на коде.

Описание состояний интеллекта муравья, сосредоточенное на коде

Наш муравей представлен классом Ant, в котором есть поле brain. Это как раз экземпляр класса FSM.

Класс Ant также содержит свойства velocity и position. Эти переменные будут использоваться для расчета движения с помощью метода Эйлера. Функция update() вызывается при каждом обновлении кадра игры.

Для понимания кода мы опустим реализацию метода moveBasedOnVelocity(). Если хотите узнать поподробнее на тему движения, прочитайте серию статей Understanding Steering Behaviors.

Ниже приводится реализация каждого из методов, начиная с findLeaf() — состояния, ответственного за поиск листьев.

Состояние goHome() — используется для того, чтобы муравей отправился домой.

И, наконец, состояние runAway() — используется при уворачивании от курсора мыши.

Улучшение FSM: автомат, основанный на стеке

Представьте себе, что муравью на пути домой также нужно убегать от курсора мыши. Вот так будут выглядеть состояния FSM:

Обновленное описание состояний интеллекта муравья

Кажется, что изменение тривиальное. Нет, такое изменение создает нам проблему. Представьте, что текущее состояние это «run away». Если курсор мыши отдаляется от муравья, что он должен делать: идти домой или искать лист?

Решением такой проблемы является конечный автомат, основанный на стеке. В отличие от простого FSM, который мы реализовали выше, данный вид FSM использует стек для управления состояниями. В верхней части стека находится активное состояние, а переходы возникают при добавлении/удалении состояний из стека.

Конечный автомат, основанный на стеке

А вот и наглядная демонстрация работы конечного автомата, основанного на стеке:

Переходы в FSM, основанном на стеке

Реализация FSM, основанного на стеке

Такой конечный автомат может быть реализован так же, как и простой. Отличием будет использование массива указателей на необходимые состояния. Свойство activeState нам уже не понадобится, т.к. вершина стека уже будет указывать на активное состояние.

Обратите внимание, что метод setState() был заменен на pushState() (добавление нового состояния в вершину стека) и popState() (удаление состояния на вершине стека).

Использование FSM, основанного на стеке

Важно отметить, что при использовании конечного автомата на основе стека каждое состояние несет ответственность за свое удаление из стека при отсутствии необходимости в нем. Например, состояние attack() само должно удалять себя из стека в том случае, если враг был уже уничтожен.

Вывод

Конечные автоматы, безусловно, полезны для реализации логики искусственного интеллекта в играх. Они могут быть легко представлены в виде графа, что позволяет разработчику увидеть все возможные варианты.

Реализация конечного автомата с функциями-состояниями является простым, но в то же время мощным методом. Даже более сложные переплетения состояний могут быть реализованы при помощи FSM.

Хинт для программистов: если зарегистрируетесь на соревнования Huawei Cup, то бесплатно получите доступ к онлайн-школе для участников. Можно прокачаться по разным навыкам и выиграть призы в самом соревновании.

Перейти к регистрации

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector