Oncool.ru

Строй журнал
2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Принцип гашения электрической дуги выключателями

ОСНОВНЫЕ ПРИНЦИПЫ ГАШЕНИЯ ЭЛЕКТРИЧЕСКОЙ ДУГИ ОТКЛЮЧЕНИЯ ВЫСОКОГО НАПРЯЖЕНИЯ

Дата добавления: 2015-07-23 ; просмотров: 1513 ; Нарушение авторских прав

При выполнении ВВ операции «отключение» в дугогасительном устройстве (ДУ) между контактами возникает электрическая дуга. Повышение эффективности дугогашения в ДУ непосредственно зависит как от параметров ВВ (быстродействие, конструкция, привод, контактные материалы и сопловые элементы ДУ и т. д.), так и энергосистемы (параметры сети, режимы, КЗ и т. д.).

Наибольшее влияние на параметры электрической дуги отключения оказывают конструкция ДУ, условия на границе плазма — дугогасящая среда, изменение диаметра дуги отключения с изменением тока отключения, взаимодействие в области нуля тока остаточного следа плазмы с дугогасящей средой и ПВН. Конструкция и материал контактов влияют на состав плазмы и ее электропроводимость в области нуля тока.

Электрическая дуга отключения деформируется под действием собственных и внешних электромагнитных сил, турбулентного перемешивания с путным потоком для газовых ДУ и имеет длину, превышающую межконтактный промежуток ДУ.

В высоковольтных коммутационных аппаратах применяются ДУ с открытым разрывом, ДУ с металлическими пластинами, ДУ продольного газового дутья, масляные (маломасляные) и вакуумные ДУ.

Для конструкций высоковольтных ДУ с открытым разрывом [4] на Uн = 10 кВ, 35 кВ, 110 кВ на рис. 2.1 приведены экспериментальные данные исследований зависимости наибольшего «вылета» дуги отключения lM от тока отключения I. Отсюда следует, что даже при малых токах 10-20 А длина дуги значительна (от 1 м до 4-10 м), время ее горения превышает 0,1 сек, что может привести к аварийной ситуации в пространстве ОРУ или ЗРУ (см. рис. 2.1).

Рис. 2.1. Зависимости «вылета» дуги отключения от тока отключения для открытого разрыва

Поэтому основными задачами совершенствования ДУ высоковольтных выключателей являются: повышение отключающей способности, ресурса (механического и коммутационного), надежности, при уменьшении габаритов и веса ДУ, времени отключения, с учетом современных требований по экологии и безопасности.

Рассмотрим некоторые ДУ высоковольтных выключателей.

ДУ с продольным газовым дутьем. В современных газовых ВВ (элегазовые и воздушные ВВ) используется система продольного одностороннего газового дутья (рис. 2.2), где дуговой разряд 1 (электрическая дуга отключения) между контактами 3 – 4 взаимодействует через сопло 2 с продольным потоком дугогасящего газа, обеспеченного перепадом давлений р/рb, где р — давление газа вверх по потоку; рb — давление газа вниз по потоку (в камере выключателя), или система двустороннего дутья (потоки газа направлены в противоположные стороны).

Рис. 2.2. Система продольного одностороннего газового дутья

ДУ с автогенерацией. Применение эффекта автогенерации в газовых ДУ (рис. 2.3, а), когда в дугогасительной камере К под действием излучения и высокой температуры дугового разряда 1 между контактами 3 – 4, изоляционные стенки 2 камеры К выделяют газ, позволяет увеличить давление газа в камере К не только благодаря высокой температуре, но и дополнительному массовому расходу от газогенерирующих стенок этой камеры. В газовых ДУ с электромагнитным дутьем (рис. 2.3, б) взаимодействие дуги отключения 1 с магнитным полем катушки S вызывает интенсивное движение дуги по контактам 3 – 4 и повышение уровня взаимодействия дуги отключения с газом в камере К. Обычно в данных ДУ дуга отключения 1 перебрасывается на дополнительный дугогасительный контакт 2 (в виде разрезанного кольца R). Вращательное движение дуги отключения вызывает интенсивную турбулизацию и нагрев газа в камере К.

Рис. 2.3. Система газовых ДУ с автогенерацией (а)
и с электромагнитным дутьем (б)

Масляные и маломасляные ДУ. Горение и гашение дуги отключения осуществляется в парогазовой смеси генерируемой самой электрической дугой отключения: за счет испарения и разложения масла под ее воздействием (этап «парогазовый пузырь»).

Эффективность дугогашения повышается, если гашение дуги осуществляется в результате ее охлаждения в потоке парогазовой смеси через сопловые конструкции ДУ ВМ и ВММ (этап «газовое дутье»).

При оценке термодинамического состояния этой дугогасящей среды исходят из средних значений температуры и усредненного химического состава, который принимается следующим: водород H2 (47-66 % от объема), ацетилен C2 H4 (14-27 %), метан C2H2 (9-15 %), этилена C2H6 (10-15 %), углекислый газ CO2 (3-2,6 %). Отсюда следует, что в составе парогазовой смеси значительную долю составляет водород, обладающий по сравнению с воздухом высокой теплопроводностью, но меньшей электрической прочностью.

Следует отметить, что на этапе («парогазовый пузырь») в масляных и маломасляных ВВ эффективно используется эффект автогенерации. На рис. 2.4 представлен ДУ с продольным автодутьем.

Рис. 2.4. Схема ДУ с продольным автодутьем

При размыкании контактов 1 и 4 возникает электрическая дуга 5.

На первом этапе горение и гашение дуги в ДУ осуществляется в парогазовом пузыре 2 (этап «парогазовый пузырь») в результате разложения масла под воздействием электрической дуги отключения (сопло 3 закрыто подвижным контактом 4). Высокое давление парогазовой смеси в пузыре 2 пропорционально мощности электрической дуги отключения и массовому расходу газогенерирующих изоляционных стенок 6 ДУ. Отключение предельных мощностей таких ДУ осуществляется на втором этапе «газовое дутье», который следует после открытия сопла 3. Наибольшая эффективность дутья при гашении дуги на втором этапе «газовое дутье» получена в конструкциях таких ДУ, где пузырь 2 соединяется с газовым объемом над маслом в баке (камере) ДУ с системой встречно-поперечного дутья.

Вакуумные ДУ. Гашение электрической дуги в вакуумных выключателях происходит в вакууме (1,10 -4 – 1,10 -5 Па), обладающем высокой электрической прочностью. Для дуги в вакууме характерны низкое падение напряжения, большая плотность тока в области катодного падения напряжения, высокая концентрация плазмы в прикатодной области [5].

При размыкании контактов и образовании вакуумной дуги источником поставки частиц в межконтактный промежуток является катод. Поэтому своеобразие дугового разряда обусловлено процессами на катоде и в области катодного пятна катода [5].

Вакуумная дугогасительная камера ВВ выполняется с одним разрывом на полюс. Дугогасительная камера состоит из следующих основных элементов (рис. 2.5): изоляционного корпуса 5, токоведущих стержней 1, 6 с коммутирующими контактами 4, системы металлических экранов 3, сильфона 2. Система экранов обеспечивает защиту внутренней поверхности изоляционного корпуса от попадания испарившихся частиц материала контактов, выравнивание распределения напряженности поля внутри камеры. Сильфон 2 применяется для перемещения подвижного контакта без нарушения герметичности камеры.

Рис. 2.5. Вакуумная дугогасительная камераРис. 2.6. Зависимости разрядных напряжений от длины межконтактного промежутка для различных изоляционных сред

Электрическая прочность межконтактного промежутка lк в вакууме превышает разрядные характеристики других сред в однородном поле (см. рис. 2.6, где кривые 1 — вакуум, 2 — масло, 3 — элегаз, 4 — воздух); при длине промежутка lк = 10 мм разрядное напряжение превышает 200 кВ.

Электрическая дуга

Свойства электрической дуги или дугового разряда

В электротехнике (автоматические выключатели, рубильники, контакторы) при выключение нагруженной цепи рождается электрическая дуга.

Установим ограничения: далее описываются процессы характерные для аппаратов с номинальными токами от 1 до 2 000 ампер и предназначенных для работы в сетях с напряжением до 1 000 вольт (низковольтная аппаратура). Для высоковольтной аппаратуры существуют другие условия возникновения и горения дуги.

Важные параметры электрической дуги:
  • дуговой разряд способен развиться исключительно при высоких токах (для металла этот ток составляет 0,5 ампера);
  • температура в стволе дуги значительная и составляет порядка 6-18 тысяч кельвинов (зачастую 6-10 тысяч кельвинов);
  • снижение напряжения у катода незначительно и равно 10-20 вольтам.
Дуговой разряд условно разделяют на три зоны:
  • околокатодную;
  • ствол дуги (основная часть);
  • околоанодную.
  • ионизация – процесс распадения нейтрального атома на отрицательный электрон и положительный ион;
  • деионизация – процесс противоположный ионизации (антоним), при котором происходит слияние электрона и иона в нейтральную частицу.

В 2-минутном видеоролике представлена замедленная съёмка гашения электрической дуги в модульном автоматическом выключателе производства ABB:

Процессы сопутствующие рождению электрической дуги

  • термоэлектронная эмиссия (освобождение отрицательных электронов из разогретой поверхности контакта);
  • автоэлектронная эмиссия (отрыв электронов из катода под влиянием значительного электрического поля).
Читать еще:  Что означает характеристика с для автоматического выключателя

Термоэлектронная эмиссия. При разрыве контактов в районе последней площадки контакта образуется зона с расплавленной медью с соответствующей температурой. Медь испаряется на отрицательном электроде из так называемого катодного пятна, которое является источником свободных электронов. На данный процесс оказывают влияние: температура и металл контактных поверхностей; он является достаточным для рождения электрической дуги, но не достаточным для поддержания её горения.

Автоэлектронная эмиссия. Воздушное пространство между контактами можно рассматривать как своеобразный конденсатор, ёмкость которого в первое мгновение неограниченна, а далее сокращается в зависимости от растущего разрыва между подвижным и неподвижным контактом. Описанный конденсатор постепенно подзаряжается и напряжение в нём сравнимо с напряжением главной цепи. Напряжённость электрического поля доходит до величин, при которых возникают условия для выхода электронов из поверхности не нагретого катода.

Соотношение влияния описанных процессов на зарождение дуги зависит от силы выключаемого тока, металла контактной группы, чистоты контактной поверхности, скорости разъединения контактов и иных факторов. Доминирование одного вида эмиссии над другим индивидуально.

Процессы поддерживающие горение дуги.

  • ионизация толчком (разогнанный электрон врезается в нейтральную частицу и «выбивает» из неё электрон);
  • тепловая ионизация (разрушение нейтральных атомов значительными температурами).

Ионизация толчком. Свободный электрон с определённой скоростью способен разбить нейтральную частицу на электрон и ион. Вновь полученный электрон способен разорвать внутренние связи у следующей частицы, в результате получается цепная реакция. Скорость электрона является функцией от разности потенциалов на участке движения (достаточный потенциал для выбивания электрона: 13-16 вольт для кислорода, водорода, азота; 24 вольта для гелия; 7,7 вольта для медных паров).

Тепловая ионизация. При высоких температурах увеличиваются скорости движения частиц в плазме, что ведёт к разрушению нейтральных атомов по принципу ионизации толчком.

Единовременно с процессами ионизации проходят процессы деионизации за счёт рекомбинации (взаимный контакт «-» и «+» частиц ведёт к слиянию их в нейтральный атом) и диффузии (выход из ствола дуги электронов во внешнюю среду, где в нормальных условиях происходит их поглощение).

Существенным фактором для продолжения горения дуги в нашем случае является тепловая ионизация, поэтому для гашения разряда применяется охлаждение его ствола (контакт с материалом высокой теплопроводности), а также удлинение самой дуги в отведённом ей пространстве.

Элегазовое оборудование — будущее электротехнической промышленности

1. Назначение и принцип работы

Элегазовый выключатель — это разновидность высоковольтного выключателя, коммутационный аппарат, использующий элегаз в качестве среды гашения электронной дуги; предназначенный для оперативных подключений и отключений индивидуальных цепей или электрооборудования в энергосистеме.

Рисунок 1 – Схема элегазового выключателя

Элегазовые выключатели начали усиленно разрабатываться с 1980 г. и имеют большие перспективы при напряжениях 110…1150 кВ и токах отключения до 80 кА. В технически развитых странах элегазовые выключатели высокого и сверхвысокого напряжения (110-1150 кВ) практически вытеснили все другие типы аппаратов.

Элегазовые выключатели высокого напряжения выполняют работу за счет изоляции фаз друг от друга посредством элегаза. Когда срабатывает уведомление о том, что нужно отключить электрооборудование, контакты некоторых камер (если аппарат колонковый) размыкаются. Таким способом, встроенные контакты образуют дугу, которая помещена в газовую среду. Она разлагает газ на разные компоненты, но при этом и сама уменьшается из-за высокого давления в емкости.

В процессе использования элегазового выключателя выполняются циклы подключения и отключения коммутационного аппарата. При различных дейсвий с выключателем в режимных целях, в большинстве случаев, ток отключения располагается в границах обозначенных значений. Количество потенциально возможных операций зависимо от тока отключения устанавливает изготовитель. Для того, найти суммарное число операций отключения, существенно нужно пользоваться особой диаграммой взаимосвязи, которую можно найти в паспорте выключателя. Чем больше ток, тем меньшее количество возможных циклов включения/отключения элегазового выключателя. Выключатель специализирован для установки в ОРУ 110кВ, так как его номинальное рабочее напряжение – 126кВ. Выключатель делает работу в согласовании с заявленными производственным изготовителем при условиях:

  • установки на возвышенности над ярусом морского побережья не больше тысячи м-ов;
  • температуры окружающей среды от -350 С до +400 С;
  • установки в согласовании с необходимыми условиями завода-изготовителя;

Элегазовые выключатели различают

  • колонковые
  • баковые

Устройство и виды элегазовых выключателей

Эти системы предназначены для оперативного контроля состояния высоковольтных линий электропередач. Они очень похожи на масляные, но имеют иную рабочую среду — принцип действия основан на свойствах соединения газов вместо масла. В качестве среды используется SF6 (шестифтористая сера).

Преимущество элегаза — неприхотливость. Если масляным моделям требуется особый уход, периодическая замена масла и очистка, то элегазовые с такой проблемой не сталкиваются. Кроме того, газ долговечен: он не деградирует со временем и почти не вредит механическим элементам выключателя.

Физически SF6 — негорючий бесцветный и лишенный запаха газ. Он гораздо плотнее воздуха, а молекулярная масса в 5 раз превышает воздушную. Газ стоек ко внешним воздействиям и сохраняет характеристики: даже если в нем возникнет дуга и начнется распад, через некоторое время состояние смеси восстановится.

Элегазовые выключателя (далее ЭВ) бывают двух видов:

  • баковый;
  • колонковый ЭВ.

Колонковые ЭВ применяют в сетях 220 В, это стандартные однофазные выключатели. Они состоят из двух связанных между собой частей:

  • дугогасительная;
  • контактная часть.

Обе имеют одинаковые размеры и объем.

Баковые ЭВ меньше. В их состав входит один из видов, рассмотренных ниже приводов. Распределение привода идет на несколько фаз, благодаря чему устройство мягко изменяет уровень напряжения. Еще одно достоинство баковых — большая допустимая нагрузка, что достигается наличием встроенного трансформатора.

Привод здесь — одновременно и регулятор: он обеспечивает включение/разрыв потока электричества и поддержания электродуги. Выделяют следующие типы приводов ЭВ:

  • пружинно-гидравлические (ППРГ);
  • более простые пружинные (ППРМ).

Обычно привод монтируется на низкой опоре или у земли, чтобы обслуживающий персонал мог легко до него добраться и отрегулировать. Деталь состоит из:

  • включающего механизма;
  • устройства расцепления;
  • фиксирующей защелки.

Пружинные надежны и устроены весьма просто, в них используется лишь несложная механика. При вводе в эксплуатацию устанавливается определенное сжатие пружины, а после смещения контрольного рычага происходит ее распрямление с дальнейшим размыканием контактов. Этот тип ЭВ часто служит стендом для презентаций поведения шестифтористой серы под действием электрического поля.

Пружинно-гидравлическое элегазовое оборудование имеет гидравлическое управление. Оно дороже, но эффективнее, поскольку способно самостоятельно менять позицию фиксатора.

Помимо конструкции, различают виды ЭВ по принципу прерывания электрической дуги:

  • вращающие;
  • воздушные (автокомпрессионные) ЭВ;
  • продольного дутья;
  • аналогичные предыдущему пункту, с разогревом газа.

Все внутренние компоненты ЭВ размещены в заполненной элегазом емкости. Контроль работы осуществляется дистанционно, с помощью электроники, или механическим способом вручную. Схема расположения всех компонентов типичного ЭВ:

Такие особенности приводят к довольно крупным габаритам приборов. Отметим, что сугубо ручное управление актуально для маломощных образцов, в других случаях прибегают к:

  • механическому контролю;
  • грузовому управлению;
  • пружинному;
  • электромагнитному способу;
  • пневматическому.

Но практически везде предусмотрен аварийный ручной рычаг.

Электромагнитный привод нуждается во внешнем питании, поэтому такой ЭВ подключают к источнику тока на 220 В и 58 А. Система весьма надежна и успешно эксплуатируется в неблагоприятных условиях. У пневматического, рабочим узлом выступает цилиндр с поршнем. Действие сжатого воздуха обеспечивает высокую скорость срабатывания.

Принцип гашения дуги

Успехи в разработках элегазовых выключтаелей откровенно оказали значительное воздействие на введение в эксплуатационную деятельность компактно размещенных на небольшой территории открытых распределительных устройствах размещенных на открытом воздухе, закрытых распределительных устройствах – размещенных в помещении и элегазовых комплектно распределительных устройствах. В элегазовых выключателях могут использоваться, разные методы гашения дуги зависимо от номинального напряжения, номинального тока отключения и объективных оценок энергосистемы (а также различных электроустановок).

В элегазовых дугогасительных устройствах , в сравнение от воздушных дугогасительных устройств, при гашении дуги истечение газа через сопло происходит не в воздушную среду, а в скрытный в себе объем камеры, наполненный элегазом при условно сравнительно маленьком лишнем давлении.

Читать еще:  Установка выключателей одноклавишных открытой установки

По методике гашения электрической дуги при выключении различают последующие элегазовые выключатели:

  • Автокомпрессионный элегазовый коммутационный аппарат , где существенно нужный крупно масштабный расход элегаза через сопла компрессионного дугогасительного устройства создается по ходу подвижной системы выключателя (автокомпрессионный выключатель с одной ступенью давления).
  • Элегазовый выключатель с электромагнитным дутьем, в котором гашение дуги в дугогасительном устройстве гарантируется вращением её по кольцевым контактам под воздействием магнитного поля, формируемого отключаемым током.
  • Элегазовый выключатель с камерами низкого и высокого давления, в каком принцип снабжения газового дутья через сопла в дугогасительном аппарате аналогичен воздушным дугогасительным устройствам (Элегазовый выключатель с 2 – мя ступенями давления).
  • Автогенерирующий элегазовый выключатель, где очень важный крупномасштабный расход элегаза через сопла дугогасительного устройства формируется за счет подогрева и увеличения давления элегаза дугой отключения в специально подготовленной камере (автогенерирующий элегазовый выключатель с одной ступенью давления).

Классификация по способу гашения электрической дуги

Дугогасящие устройства различаются по способу воздействия на электрическую дугу с целью ее охлаждения:

• Автопневматический (компрессионный) обдув происходит при переходе газа в момент разрыва контакта из емкости с давлением 1,5 — 2 МПа в емкость с более низким давлением. За счет обдува дуга охлаждается и гаснет.

• Магнитное (вращающее) воздействие возникает при разрыве контактов, оснащенных постоянными магнитами или последовательно подключенной катушкой. Магнитное (электромагнитное) поле, возникающее между ними, создает завихрение электрической дуги, ее охлаждение и постепенное гашение.

• Продольное дутье провоцируется при перемещении подвижного контакта оснащенного перегородкой в сторону поршня. Элегаз под действием давления, возникающего между поршнем и перегородкой, выдувается через предусмотренные отверстия и формируется в газовую струю специальным соплом.

Особенностью шестифтористой серы является ее способность сжижаться при довольно высоких температурах, что делает затруднительным использования выключателей в холодный период. Для решения этой проблемы применяется нагреватель, работающий на схеме автоматики, который обеспечивает постоянную температуру SF6.

Таким образом, некоторые модели ЭВ способны работать при температурах от -35°С до +45°С и на высоте более 1000 м над уровнем моря.

5. Достоинства и недостатки

Учитывая вышеупомянутое, между плюсами выключателей элегазового типа можно отметить следующее:

  • возможность установки в электроустановках как закрытого, так и открытого выполнения буквально всех классов напряжения;
  • отмечается простота и надежность конструкции в эксплуатации;
  • высокая интенсивность скорости срабатывания;
  • низкие динамические нагрузки на фундаментные опоры;
  • неплохая отключающая способность;
  • небольшие габаритные пропорции и сумма веса;
  • наличие в приводе автоматического управления двух ступеней обогрева;
  • большой коммутационный ресурс контактной системы;

Недостатки элегазовых выключателей:

  • требуется более внимательное отношение к использованию и учету элегаза;
  • высокие необходимые условия к качеству элегаза;
  • необходимость специально подготовленных устройств для заполнения, перекачки и фильтрации элегаза;
  • относительно высокая стоимость элегаза;
  • сложность и накладность изготовления — при производственном изготовлении неизбежно нужно соблюдать высокоё качество аппарата;
  • дороговизна конструкции и второстепенных элементов;
  • при выводе из строя выключателя в режиме ЧП, починка данного аппарата может быть не актуальной.

Особенности обслуживания и эксплуатации

Разделение автоматических выключателей по время токовым характеристикам

В процессе эксплуатации таких коммутационных устройств на ОРУ (открытых распределительных устройствах) нужно учитывать что в шкафах приводов выключателей может скапливаться конденсат, который приводит к коррозии систем механизма, а также вторичных цепей управления и сигнализации. Для этого внутри шкафов заводом изготовителем предусмотрены нагревательные резисторы, работающие постоянно.

Все действия по включению или же отключению аппаратов возможны только, если давление газа не меньше допустимого, если пренебречь этим то появляется высокая вероятность повреждения и выхода со строя относительно дорого выключателя. Для этих целей должна быть налажена сигнализация минимального давления, а также блокировка управляющих цепей. Если же персонал заметил что давление упало, аппарат нужно вывести в ремонт и приступить к поиску причин снижения этого жизненно важного для него показателя. Естественно, что вывод его из работы должен выполняться со всеми необходимыми требованиями безопасности, предъявляемыми к данной электроустановке и изложенных в местных инструкциях. Для контроля давления должен быть обязательно исправный манометр, а после устранения утечки газа стоит дополнить его через специальное присоединение, которое расположено внутри приводного механизма.

Осмотр элегазовых выключателей выполняется ежедневно, а также один раз за две недели в ночное время суток. В сырую влажную погоду нужно обращать внимание на возникновение электрической коронации. Если величина отключаемого тока была предельно допустимая (при коротких замыканиях), то следует обеспечить качественное техническое обслуживание. Количество отключений как плановых, так и аварийных фиксируется в специально выделенных для этих нужд журналах.

Несмотря на существующие недостатки, элегазовый выключатель имеет свои сильные стороны поэтому является достойной заменой не только масляных, но и воздушных выключателей высокого напряжения.

6. Технические характеристики

В таблице приведены технические характеристики выключателей ВГТ — 110 кВ. Таблица 5.1 – Основные технические данные выключателя ВГТ — 110 кВ

Реферат: Виды дугогосящих устройств, классификация их по способу воздействия на дугу

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Уфимский государственный технический университет

Кафедра электротехники и электрооборудования предприятий

РЕФЕРАТ

по курсу “Электротехнические и электронные аппараты”

“Виды дугогосящих устройств, классификация их по способу воздействия на дугу.”

Выполнил: ст. гр. АЭ-99-01 Лопатин А. В.

Принял: доцент. к.т.н. Гузеев Б.В.

Условия возникновения и горения дуги

При замыкании контактов в цепи высокого напряжения возникает электрический разряд в виде дуги. В дуге различают околокатодное про­странство, ствол дуги и околоанодное пространство. Все напря­жение распределяется между этими областями. Около катода наблюдается вы­сокая напряженность электрического поля (10 5 —10 6 В/см). При таких высо­ких напряженностях происходит ударная ионизация. Электроны, вырванные из катода силами электрического поля (автоэлектронная эмиссия) или за счет нагрева катода (термоэлектронная эмиссия), разгоняются в электрическом поле и при ударе в нейтралый атом отдают ему свою кинетическую энергию. Образовавшиеся в результате ионизации свободные электроны и ионы со­ставляют плазму ствола дуги. В стволе дуги проходит боль­шой ток и создается высокая температура.

Высокие температуры в стволе дуги приводят к интенсивной термоионизации, которая поддерживает большую проводимость плазмы. Чем больше ток в дуге, тем меньше ее сопротивление, поэтому требуется меньшее напряжение для горения дуги, т. е. дугу с большим током погасить труднее.

Если дуга погашена теми или иными способами, то напряжение между контактами выключателя должно восстановиться до напряженияпитаю­щей сети. Однако поскольку в цепи имеются индуктивные, активные и ем-жюстные сопротивления, возникает переходный процесс, появляются коле­бания напряжения, амплитуда которых может значительно превышать нормальное напряжение. Для отключающей аппаратуры важно, с какой скоростью восстанавливается напряжение.

Таким образом, можно заключить, что дуговой разряд начинается за счет ударной ионизации и эмиссии электронов с катода, а после зажигания дуга поддерживается термоионизацией в стволе дуги.

Гашение дуги

В коммутационных аппаратах необходимо не только разомкнуть контакты,но и погасить возникшую между ними дугу.

В цепях переменного тока ток в дуге каждый полупериод проходит че­рв нуль, в эти моменты дуга гаснет самопроизвольно, но в следующий полупериод она может возникнуть вновь. Как показывают осцилограммы, ток в дуге становится близким нулю несколько раньше естественного перехода через нуль. Это объясняется тем, что при снижении тока энергия, подводимая к дуге, уменьшается, следовательно уменьшается температура дуги и прекращается термоионизация. Дли­тельность бестоковой паузы невелика (от десятков до нескольких сотен микросекунд), но играет важную роль в гашении дуги. Если разомкнуть контакты в бестоковую паузу и развести их с достаточной скоростью на большое расстояние, чтобы не произошел электрический пробой, то цепь будет отключена очень быстро.

Читать еще:  Номинальное напряжение для автоматического выключателя

Во время бестоковой паузы интенсивность ионизации сильно падает, так как не происходит термоионизации. В коммутационных аппаратах, кроме того, принимаются искусственные меры охлаждения дугового про­странства и уменьшения числа заряженных частиц.

Резкое увеличение электрической прочности промежутка после перехо­да тока через нуль происходит главным образом за счет увеличения про­чности околокатодного пространства.

Задача гашения дуги сводится к созданию таких усло­вий, чтобы электрическая прочность промежутка между контактами была больше напряжения между ними.

В отключающих аппаратах до 1 кВ широко используются следующие способы гашения дуги.

Способы гашения дуги в коммутационных аппаратах до 1 кВ.

В отключающих аппаратах до 1 кВ широко используются следующие способы гашения дуги.

1. Удлинение дуги при быстром расхождении контактов: чем длинее дуга, тем большее напряжение необходимо для ее существования. Если напряжение источника окажется меньше, то дуга гаснет.

2. Деление длинной дуги на ряд коротких дуг.

3. Гашение дуги в узких щелях. Если дуга горит в узкой щели, образованной дугостойким материалом, то благодаря соприкосновению с холодными поверхностями происходит интенсивное охлаждение и диф­фузия заряженных частиц в окружающую среду. Это приводит к быстрой деионизации и гашению дуги.

4. Движение дуги в магнитном поле . Электрическая дуга мо­жет рассматриваться как проводник с током. Если дуга находится в маг­нитном поле, то на нее действует сила, определяемая по правилу левой ру­ки. Если создать магнитное поле, направленное перпендикулярно оси дуги, то она получит поступательное движение и будет затянута внутрь щели дугогасительной камеры.

В радиальном магнитном поле дуга получит вращательное движение. Магнитное поле может быть создано постоянными магнита­ми, специальными катушками или самим контуром токоведущих частей

Быстрое вращение и перемещение дуги способствует ее охлаждению и деионизации.

Последние два способа гашения дуги (в узких щелях и в магнитном по­ле) применяются также в отключающих аппаратах напряжением выше 1 кВ.

Основные способы гашения дуги в аппаратах выше 1 кВ.

1. Гашение дуги в масле. Если контакты отключающего аппарата поместить в масло, то возникающая при размыкании дуга приводит к ин­тенсивному газообразованию и испарению масла. Вокруг дуги образуется газовый пузырь, состоящий в основном из водорода (70—80%); быстрое разложение масла приводит к повышению давления в пузыре, что способствует ее лучшему охлаждению и деионизации. Водород обладает высокими дугогасящими свойствами; соприкасаясь непосредственно со стволом дуги, он способствует ее деионизации. Внутри газового пузыря происходит непрерывное движение газа и паров масла. Гашение дуги в масле широко применяется в выключателях.

2. Газовоздушное дутье. Охлаждение дуги улучшается, если соз­дать направленное движение газов — дутье. Дутье вдоль или поперек дуга способствует проникновению газовых частиц в ее ствол, интен­сивной диффузии и охлаждению дуги. Газ создается при разложении масла дугой (масляные выключатели) или твердых газогенерирующих материа­лов (автогазовое дутье). Более эффективно дутье холодным неионизиро­ванным воздухом, поступающим из специальных баллонов со сжатым воз­духом (воздушные выключатели).

3. Многократный разрыв цепи тока. Отключение большого тока при высоких напряжениях затруднительно. Это объясняется тем, что при больших значениях подводимой энергии и восстанавливающегося на­пряжения деионизация дугового промежутка усложняется. Поэтому в вы­ключателях высокого напряжения применяют многократный разрыв дуги в каждой фазе. Такие выключатели имеют несколько гасительных устройств, рассчитанных на часть номинального напряжения. Чис­ло разрывов на фазу зависит от типа выключателя и его напряжения. В выключателях 500—750 кВ может быть 12 разрывов и более. Чтобы облегчить гашение дуги, восстанавливающееся напряжение должно равно­мерно распределяться между разрывами. Для выравнивания напряжения параллельно главным контактам выключа­теля Г К включают емкости или активные сопротивления.

4. Гашение дуги в вакууме. Высокоразреженный газ обладает электрической прочностью, в десятки раз большей, чем газ при атмосферном давлении. Если контакты размыкаются в вакууме, то сразу же после первого прохождения тока в дуге через нуль прочность промежутка восстанавливается и дуга не загорается вновь. Эти свойства вакуума используются в некоторых типах выключателей.

5. Гашение дуги в газах высокого давления. Воздух при давлении 2 МПа и более также обладает высокой электрической проч­ностью. Это позволяет создавать достаточно компактные устройства для гашения дуги в атмосфере сжатого воздуха. Еще более эффективно приме­нение высокопрочных газов, например шестифтористой серы SFg (элегаза). Элегаз обладает не только большей электрической прочностью, чем воз­дух и водород, но и лучшими дугогасящими свойствами даже при атмос­ферном давлении. Элегаз применяется в выключателях, отделителях, короткозамыкателях и другой аппаратуре высокого напряжения.

Гашение дуги в масляных выключателях.

В масляных выключателях контакты размыкаются в масле, однако вследствие высокой температуры дуги, образующей­ся между контактами, масло разлагается и дуговой разряд происходит в газовой среде. Приблизительно половину этого газа (по объему) составляют пары масла. Остальная часть состоит из водорода (70%) и углеводородов различного состава. Газы эти горючи, однако в масле горение невозможно из-за отсутствия кислорода. Количество масла, разлагаемого дугой, невелико, но объем обра­зующихся газов велик. Один грамм масла дает приблизительно 1500 см 3 газа, приведенного к комнатной температуре и атмосферному давлению.

Гашение дуги в масляных выклю­чателях происходит наиболее эффективно при применении гасительных камер, которые ограничивают зону дуги, спо­собствуют повышению давления в этой зоне и образованию газового дутья сквозь дуговой столб.

Гашение дуги в элегазовых выключателях

Элегаз (SFg — шестифтористая сера) представляет собой инертный газ, плот­ность которого превышает плотность воздуха в 5 раз. Электрическая проч­ность элегаза в 2—3 раза выше проч­ности воздуха; при давлении 0,2 МПа электрическая прочность элегаза сравни­ма с прочностью масла.

В элегазе при атмосферном давлении может быть погашена дуга с током, который в 100 раз превышает ток, отключаемый в воздухе при тех же условиях. Способность элегаза гасить дугу объясняется тем. что его молекулы улавливают электро­ны дугового столба и образуют отно­сительно неподвижные отрицательные ионы. Потеря электронов делает дугу неустойчивой, и она легко гаснет. В струе элегаза поглощение электронов из дугового столба происходит еще интенсивнее.

В элегазовых выключателях приме­няют автопневматические дугогасительные устройства, в которых газ в про­цессе отключения сжимается поршне­вым устройством и направляется в зо­ну дуги. Элегазовый выключатель представляет собой замкнутую систему без выброса газа наружу.

Гашение дуги в вакуумных выключателях

Электрическая прочность вакуумного промежутка во много раз боль­ше, чем воздушного промежутка при атмосферном давлении. Это свойство используется в вакуумных дугогасительных камерах. Ра­бочие контакты имеют вид полых усеченных конусов с радиальными прорезями. Такая форма контактов при размыкании создает радиальное электродинамическое усилие, действующее на возникающую дугу и застав­ляющее перемещаться ее через зазоры на дугогасительные контакты. Контакты представляют собой диски, разрезанные спиральными прорезя­ми на три сектора, по которым движется дуга. Материал контактов по­добран так, чтобы уменьшить количество испаряющегося металла. Вслед­ствие глубокого вакуумапроисходит быстрая диффузия заряженных частиц в окружающее про­странство и при первом переходе тока через нуль дуга гаснет.Подвод тока к контактам осуществляется с помощью медных стержней. Подвижный контакт крепится к верхнему фланцу с помощью сильфона из нержавеющей стали. Сильфон служит для обеспечения герметичности вакумной камеры. Металлическиеэкраны служат для выравнивания электрического поля и для защиты керамического корпуса от попадания паров металла, образующихся при гашении дуги.

Список использованой литературы

1. Чунихин А. А. Электрические аппараты: Учеб. пособие. – М.: Энергия, 1967. – 536 с.

2. Электрическая часть станций и подстанций: Учеб. для вузов/А. А. Васильев, И. П. Крючков, Е. Ф. Наяшкова и др., Под ред. А. А. Васильева – М.: Энергоатомиздат, 1990.

3. Рожкова Л. Д., Козулин В.С. Электороборудование станций и подстанции: Учебник для техникумов. – М.: Энергоатомиздат, 1987.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector