Oncool.ru

Строй журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Принцип работы привода масляного выключателя

Устройство выключателя типа ВМГ-10

ТОЛЬЯТТИНСКИЙ МАШИНОСТРОИТЕЛЬНЫЙ КОЛЛЕДЖ

Презентация на тему:
«Масляные выключатели типа ВМП и ВМГ»

студент гр. ТЭ 28-2
Евдокимов Денис

Масляный выключатель — коммутационный аппарат, предназначенный для оперативных включений и отключений отдельных цепей или электрооборудования в энергосистеме, в нормальных или аварийных режимах, при ручном или автоматическом управлении. Дугогашение в таком выключателе происходит в масле.

Принцип работы маломасляного выключателя основан на гашении дуги, возникающей при размыкании контактов, потоком газомасляной смеси, образующейся в результате интенсивного разложения трансформаторного масла под действием высокой температуры дуги. Этот поток получает определенное направление в дугогасительном устройстве, размещенном в зоне горения дуги.
Камера собирается из пластин фибры, гетинакса и электроизоляционного картона и стягивается изоляционными шпильками. Камера имеет три щели для гашения дуги.

Выключатели типа ВМП-10 относятся к малообъёмным масляным выключателям. Выключатели этого типа изготавливаются на напряжение 10кВ двух типоразмеров:
— для ячеек типа КСО и наборных ячеек ЗРУ – ВМП-10, ВМП-10У (У-усиленные, предназначенные для работы при частых коммутационных операциях – до 50 тыс. операций без нагрузки)
— для КРУ – ВМП-10К, ВМП-10КУ с номинальными токами 600, 1000 и 1500А и током отключения 20 кА.
Коммутационный ресурс — 6 отключений коротких замыканий.
Механический ресурс – 1500 операций «Вкл.-Откл.».

Маломасляные выключатели выпускаются отечественными предприятиями серии ВМП (выключатель масляный подвесной) с встроенным пружинным или электромагнитным приводом, выключатели масляные горшкового типа ВМГ-10 и др. Сохранившиеся в эксплуатации баковые масляные выключатели в настоящее время вытесняются маломасляными, а теперь уже вакуумными, элегазовыми и др.
В сетях применяют выключатели с малым объемом масла ВПМ-10, ВПМП-10, ВМП-10, ВМП-10К, ВМП-10П, ВМПП-10.
В маломасляном выключателе отсутствует большой металлический бак. Дугогасительное устройство располагается либо в бачке из изоляционного материала либо в металлических бачках небольшого диаметра (выключатели серии МГ).

Основные элементы выключателя ВМП-10

2 — опорный изолятор;

4 — изоляционная тяга;

Б — масляный буфер

Подробное устройство масляного выключателя ВМП-10

а — внешний вид выключателя;
1 — стальная рама;

2 — отключающая пружина;

3 — двуплечный рычаг;

4 — вал выключателя;

5 — пружинный демпфер;

6 — болт заземления;

7 — опорный изолятор;

9 — масляный демпфер;

11 — изолирующая тяга;

б — разрез фазы выключателя;
13 — выпрямляющий механизм;

15 — канал для выхода газа;

17 — пробка маслоналивного отверстия;

18 — отверстия маслоотделителя;

21 — контактный стержень;

22 — стеклоэпоксидный цилиндр;

23 — центральный канал камеры;

24 — боковой выхлопной канал;

25 — дугогасительная камера;

26 — нижняя крышка фазы;

27 — маслоспускная пробка;

28 — отводящая шина;

29 — неподвижный контакт;

30 — нижний фланец;

31 — буферное пространство;

32 — масляный карман;

33 — подвижный контакт;

34 — верхний вывод;

35 — подводящая шина; 36 — токосъемные ролики;

Процесс гашения дуги в камере выключателя ВМП-10

а — выключатель включен,

б — гашение дуги,

в — выключатель отключен
1 — крышка выключателя с нижним вводом;

2 — подвижный контакт;

3 — неподвижный контакт;

4 — трансформаторное масло;

5 — воздушная подушка;

6 — дугогасительная камера;

7 — изоляционный цилиндр

Внешний вид выключателей типа ВМП

ВЫКЛЮЧАТЕЛЬ ВМГ-10

Выключатель ВМГ 10 разработан на базе выключателя ВМГ-133

Выключатель масляный ВМГ 10 предназначен для коммутаций в шкафах и ячейках комплектных распределительных устройств. ВМГ-10 (630-1600) может быть использован в камерах КСО-272, КСО-285. Принцип работы выключателей ВМГ10 основан на гашении электрической дуги, возникающей при размыкании контактов, потоком газомасляной смеси, образующейся в результате интенсивного разложения трансформаторного масла под действием высокой температуры дуги.

СТРУКТУРА УСЛОВНОГО ОБОЗНАЧЕНИЯ ВЫКЛЮЧАТЕЛЯ ВМГ-10
пример: выключатель ВМГ-10-20/630, ВМГ-10/20-1000 В – выключатель. М – масляный. Г – горшковый. 10 – номинальное напряжение, кВ. 20 — номинальный ток отключения, кА. 630; 1000 – номинальный ток, А.

Устройство выключателя типа ВМГ-10

Основанием выключателя служит рама 1, на которой смонтированы три полюса. Каждый полюс крепится к раме на двух опорных изоляторах. Полюс состоит из цилиндра 2, проходного изолятора 3, дугогасительной камеры 4, подвижного токоведущего стержня 5 и неподвижного розеточного контакта 6.

Внешний вид выключателей типа ВМГ

Масляные выключатели ВМП — 10, ВМПЭ — 10

Выключатель масляного типа ВМП-10 является выключателем трехполюсным, который имеет в своем составе специальный привод, работающий на основе пружин, и блок релейной защиты. Специфика производства данных выключателей заключается в том, что масляные выключатели изготавливаются двух типов:

  • Выключатели, функционирующие в обычном климате;
  • Выключатели, функционирующие в более жестких климатических условиях.

Предназначение масляного выключателя

Следует отметить, что выключатель подобного типа является высоковольтным устройством. Благодаря специфической структуре внутренних компонентов, данные переключатели можно монтировать с некоторым отклонением по вертикали. Данная особенность позволяет избежать потерю времени при установке выключателя. Еще одним преимуществом выключателя типа ВМП-10 над другими устройствами подобного предназначения является тот факт, что ВМП-10 можно использовать при величине тока, как в 20 кА , так и в 31.5 кА. Следует сказать, что практически все выключатели такого типа достаточно универсальны и отличаются исключительно длиной контактов и структурой проводов, выводящих ток.

ВМП — 10 это малообъёмные масляные выключатели, применяются нa нaпряжение 10 kB двух размерoв:

  • для ячеек сбoрных кaмер oдностoроннегo обслуживaния и наборных ячеек 3РУ – ВМП – 10, ВМП – 10У;
  • для комплектных распределительных высоковольтных устройств – BМП – 10 K, ВМП – 10 КУ с номинальными токами 600, 1000 и 1500 A и током отключения 20 kA

Классификация выключателей класса ВМП-10

Масляные выключатели ВМП-10 отличаются между собой по величине номинального тока. Одним из самых распространенных масляных выключателей серии ВМП-10 является выключатель, который имеет номинальный ток величиной в 630А, напряжение величиной в 10 кВ и номинальный ток отключения 20 кА. Популярность данного выключателя заключается в том, что в своем составе данный выключатель имеет специальную защитную схема с двумя реле РТМ, которые срабатывают максимально быстро, практически мгновенно.

Принцип работы масляного выключателя

Необходимо отметить, что структура данного выключателя несколько отличается от подобных устройств. Основным отличием является то, что электромагниты и реле имеют специфический принцип размещения в выключателе. Важно отметить, что реле функционируют для защиты всех компонентов масляного выключателя. В остальном, структура выключателей серии ВМП-10 похожа со структурой выключателей серии ВМП-10П. следует сказать, что данный масляный фильтр имеет надежный и стабильный привод ВМП-10, который работает практически без сбоев.

Строение приводного устройства

Строение привода ВМП-10 довольно простое, что позволяет ему работать стабильно и надежно. Приводное устройство состоит из стандартных компонентов:

  • Основной вал привода ВМП-10;
  • Вал, проходящий через основной выключатель;
  • Крепежная рама;
  • Устройство заводного типа, приводящее в действие рабочие пружины;
  • 2 запорные устройства, которые между собой идентичны;
  • Блок срабатывания аварийной сигнализации;
  • Блок, контролирующий корректность положения привода;
  • Блок для контроля положения выключателя;
  • Электрические магниты для дистанционного выключения ЭО;
  • Вал релейного типа;
  • Пульт для ручного управления;
  • Проводка;
  • Набор специальных зажимов.

Специфика строения привода заключается также в том, что в нем предусмотрена защита от так называемых «прыжков напряжения». Данная защита проведена через блок-контакт.

Условия для эксплуатации

  • для исполнения У3 при температуре от -25 до +40 °C и oтнoсит. влажнoсти вoздуха 80% при температуре 20 °C;
  • для исполнения Т3 при температуре от -10 до +45 град.С и oтнoсит. влажнoсти вoздуха 80% при температуре 27 °C.
  • в воздухе не должно содержаться газов и паров в концентрациях, разрушающих изоляцию и металл; недопустимо использование во взрыво- пожароопасных местах.

Эксплуатируются при температурах от -40 до +40 °C. Выключатель соединяется с привoдами ПЭ — 11, ППМ – 10, ПП – 67. Ресурсы работы: 1500 операций вкл/выкл; 6 отключений при коротком замыкании. Возможна установка в шкафы комплектных распределительных устройств выкатного типа.

Трёхполюсные выключатели высокого напряжения ВМПЭ — 10 применяются для связывания электрических цепей при обычных и аварийных режимах в сетях З-х фазнoго перемен. тoка с частoтoй 50 и 60 Hz и напряж.10 kB.

Высоковольтные выключатели: масляные баковые, маломасляные, воздушные, электромагнитные, элегазовые. Назначение, устройство, достоинства и недостатки, условия выбора

Высоковольтные выключатели – коммутационный аппарат, предназначенный для включения и отключения тока в любых режимах: длительная нагрузка; перегрузка; короткое замыкание; холостой ход; несинхронная работа.

К высоковольтным выключателям предъявляют следующие требования:

надежное отключение любых токов (от десятков ампер до номинального тока отключения);

быстрота действия, т.е. наименьшее время отключения;

пригодность для быстродействующего АПВ , т.е. быстрое включение выключателя сразу же после отключения;

возможность пофазного (пополюсного) управления для выключателей 110 кВ и выше;

легкость ревизии и осмотра контактов;

взрыво- и пожаробезопасность;

удобство транспортировки и эксплуатации.

Масляные баковые.Масло в этих выключателях служит для гашения дуги и изоляции токоведущих частей.

Существуют выключатели с дугогасительными устройствами и без них.

По принципу действия дугогасительные устройства можно разделить на три группы.

1.с автодутьем, в которых высокое давление и большая скорость движения газа в зоне дуги создаются за счет выделяющейся энергии.

2.с принудительным масляным дутьем, у которых к месту разрыва масло нагнетается с помощью специальных механизмов.

3.с магнитным гашением в масле, в которых дуга под действием магнитного поля перемещается в узкие каналы и щели.

Наиболее простым и эффективным является дугогасительные устройства с автодутьем.

Основные приемущества баковых выключателей. Простота конструкции, высокая отключаюшая способность, пригодность для наружной установки встроенных трансформаторов тока.

Недостатки баковых выключателей. Взрыво-пожаро опасность; необходимость периодического контроля за состоянием масла в баке и в вводах; большой объем масла, что обуславливает большую затрату времени на замену, необходимость больших запасов масла; непригодность для установки внутри помещений ; непригодность для выполнения быстродействующего АПВ; большая затрата металла, большая масса, неудобство перевозки, монтажа и наладки.

Маломасляные выключатели.Маломасляные выключатели (горшковые) получили широкое распространение в закрытых и открытых распредилительных устройствах всех напряжений. Масло в этих выключателях служит в основном дугогасящей средой и только частично изоляцией между разомкнутыми контактами. Изоляция токоведущих частей друг от друга и от заземленных конструкций осуществляется фарфором или другим твердым изолирующими материалами. Контакты выключателей для внутренней установки находятся в стальном бачке (горшке), отсюда сохранилось название выключателей «горшковые». Маломаслянные выключатели напряжением 35 кВ и выше имеют фарфоровый корпус. Самое широкое применение имеют выключатели 6-10 кВ подвесного типа. В этих выключателях корпус крепится на фарфоровых изоляторах к общей раме для всех трех полюсов. В каждом полюсе предусмотрен один разрыв контактов и дугогасительная камера. – главный и дугогасительный контуры.

Читать еще:  Выключатель сигнала торможения урал 5557

Различают выключаели: ВМП (выкл маломасл подвесной) – широко применяется в ЗРУи КРУ 6-10 кВ. Выключатели для КРУ имеют встроенный пружинный или электромагнитный привод (ВМПП и ВМПЭ). Номинальный ток 630- 3150 А и токи отключения 20 и 31,5 кА.

ВК-10 Маломаслянные выключатели колонкового типа. Работа выключателя основана на гашении электрической дуги, возникшей при размыкании контактов, потоком газомасляной смеси, образующейся в результате интенсивного разложения трансформаторного масла, под действием высокой температуры дуги. Этот поток получает свое напрявление в специальном дугогасительном устройстве, размещенном в зоне горения дуги.

МГГ, МГ и ВМГ Выключатели маслянные горшковые. Изготавливаются на большие номинальные токи. Выключатели этих серий имеют два стальных бачка на полюс и по две пары рабочих дугогасительных контактов.

ВМК и ВМУЭ Выключатели масляные колонковые. ВМТ (110 кВ).
Достоинствами маломасляных выключателей являются небольшое количество масла, относительно малая масса, более удобный, чем у баковых выключателей, доступ к дугогасительным контактам, возможность создания серии выключателей на разное напряжение с применением унифицированных узлов.

Недостатки маломасляных выключателей: взрыво- и пожароопасность, хотя и значительно меньшая, чем у баковых выключателей; невозможность осуществления выстродействующего АПВ; необходимость периодического контроля, доливки, относительно частой замены масла в дугогасительных бачках; трудность установки встроенных трансформаторов тока; относительно малая отключающая способность. Область применения мааломаслянных выключателей – ЗРУ электростанций и подстанций 6, 10, 20, 35 и 110 кВ, КРУ 6, 10, 35 кВ и ОРУ 35, 110, 220 кВ.

Воздушные выключатели.В воздушных выключателей гашение дуги происходит сжатым воздухом, а изоляция токоведущих частей и дугогасительного устройства осуществляется фарфором или другими твердыми материалами. Конструктивные схемы воздушных выключателей различны и зависят от их номинального напряжения, способа создания изоляционного промежутка между контактами в отключенном положении, способа подачи сжатого воздуха в дугогасительное устройство.

В выключателя на большие номинальные токи имеются главный и дугогасительный контуры. Основная часть тока во включенном положении выключателя проходит по главным контактам, расположенным открыто. При отключении выключателя главные контакты размыкаются первыми, после чего весь ток проходит по дугогасительным контактам, заключенным в камере. К моменту размыкания этих контактов в камеру подается сжатый воздух из резервуара, создается мощное дутье, гасящее дугу. И т.д.

Достоинства. взрыво- пожаробезопасность, быстродействие и возможность осуществления быстродействующего АПВ, высокую отключающую способность, надежное отключение емкостных токов линий, малый износ дугогасительных контактов, легкий доступ к дугогасительным камерам, возможность создания серий из крупных узлов, пригодность для наружной и внутренней установки.

Недостатки. Необходимость компрессорной установки, сложная конструкция ряда деталей и узлов, относительно высокая стоимость, трудность установки встроенных трансформтаторов тока.

Электромагнитные выключатели. Электромагнитные выключатели для гашения дуги не требуют ни масла, ни сжатого воздуха, что является большим преимуществом их перед другими типами выключателей. Выключатели этого типа выпускают на напряжения 6-10 кВ, номинальный ток до 3600 А и ток отключения до 40 кА.

Достоинства. Полная взрыво- и пожаробезопасность, малый износ дугогасительных контактов, пригодность для работы в условиях частых включений и отключений, относительно высокая отключающая способность.

Недостатки. Сложность конструкции дугогасительной камеры с ситемой магнитного дутья, ограниченный верхний предел номинального напряжения (15-20 кВ), ограниченная пригодность для наружной установки.

Вакуумные выключатели. (рис.1)Электрическая прочность вакуумного промежутка во много раз больше, чем воздушного промежутка при атмосферном давлении. Это свойство используется в вакуумных дугогасительных камерах КДВ. Рабочие контакты имеют вид полых усеченных конусов с радиальными прорезями. Такая форма контактов при размыкании создает радиальное электродинамическое усилие, действующее на возникшую дугу и заставляющее перемещаться ее через зазоры на дугогасительные контакты. Контакты представляют собой диски, разрезанные спиральными прорезями на три сектора, по которым движется дуга. Материал контактов подобран так, чтобы уменьшить количество испаряющегося металла. Вследствие глубокого вакуума происходит быстрая диффузия заряженных частиц в окружающее пространство и при первом переходе тока через нуль дуга гаснет.

Достоинства вакуумных выключателей.Простота конструкции; высокая степень надежности, высокая коммутационная износостойкость, малые размеры, пожаро- и взрывобезопасность, отсутствие шума при операциях, отсутствие загрязнения окружающей среды, малые эксплуатационные расходы.

Недостатки вакуумных выключателей. Сравнительно небольшие номинальные токи и токи отключения, возможность коммутационных перенапряжений при отключении малых индуктивных токов.

Элегазовые выключатели.Элегаз SF6 обладает высокими дугогасящими свойствами, которые используются в аппаратах высокого напряжения. Выключатели во многом напоминают конструкцию отделителей. Однако, для успешного отключения тока в них предусматривается устройства для вращения дуги в элегазе. В подвижный и неподвижный контакт встроены постоянные магниты, которые создают магнитные поля, направленные встречно. При размыкании контактов образуется дуга, ток которой взаимодействует с радиальным м.п., в результате чего создается сила F, перемещающая дугу по кольцевым электродам. Вращение дуги в элегазе способствует быстрому гашению. Чем больше ток, тем больше скорость перемещения дуги, это защищает контакты от обгорания. Контактная система описанной конструкции помещается внутри фарфорового корпуса, заполненного элегазом и герметически закрытого.

Достоинства элегазовых выключателей: пожаро- взрывобезопасность, быстрота действия, высокая отключающая способность, малый износ дугогасительных контактов, возможность создания серий с унифицированными узлами, пригодность для наружной установки и внутренней.

Недостатки: необходимость спец устройств для наполнения, перекачки и очистки SF6, относительно высокая стоимость SF6.

Выбор выключателей.

1. по U установки: UУСТ ≤ UНОМ;

3. по отключающей способности на симметричный ток отключения

, где IП.τ– периодическая составляющая тока КЗ в момент расхождения контактов τ; IОТК. НОМ – номинальное допустимое значение периодической составляющей, кА; UНОМ, IНОМ– номинальные Uи Iвыключателя;

4. по отключающей способности на возможность отключения апериодической составляющей тока КЗ: ia≤ ia, ном, где ia, ном– номинальное допускаемое значение апериодической составляющей в отключаемом токе для времени τ, кА; ia– апериодическая составляющая тока КЗ в момент расхождения котактов τ, кА; τ – наименьшее время от начала КЗ до момента расхождения дугогасительных контактов,с;

5. по включающей способности: iу≤ iвкл, Iп,0≤ Iвкл– где iу– ударный ток КЗ в цепи выключателя, кА; Iп,0– начальное значение периодической составляющей тока КЗ в цепи выключателя, кА; Iвкл– номинальный ток включения (действующее значение периодической составляющей), кА; iвкл– наибольший пик тока включения, кА.

Заводами – изготовителями соблюдается условие: iвкл= kу√2 Iвкл, где kу– 1,8 – ударный коэф. нормированный для выключателей.

6. на электродинамическую стойкость: iу≤ iдин , Iп,0≤ Iдин– где Iдин– действующее значение периодической составляющей предельного сквозного тока КЗ; iдин– наибольший пиковый ток (ток электродинамической стойкости).

7. на термическую стойкость: ВК ≤ I 2 ТЕРtТЕР, где ВК – тепловой импульс тока КЗ по расчёту, А 2 с; IТЕР– среднеквадратичное значение тока за время его протекания (ток термической стойкости) по каталогу, кА; tТЕР– длительность протекания тока термической стойкости по каталогу, с.

34Автоматические выключатели ( А.В.): назначение, основные характеристики, виды выключателей, условия выбора. Карта селективности.

Предназначены для коммутации цепей при аварийных режимах, а также нечастых (от 6 до 30 в сутки) оперативных включений и отключений электрических цепей.

А.В. имеют реле прямого действия, называемые расцепителями. Они могут снабжаться следующими встроенными в них расцепителями:

1. Электромагнитным или электронным расцепителем максимального тока мгновенного или замедленного действия с практически независимой от тока выдержкой времени;

2. Электротермическим или электронным инерционным расцепителем максимального тока с зависимой от тока выдержкой времени;

3. Расцепителем тока утечки;

4. расцепителем минимального напряжения;

5. расцепителем обратного тока или обратной мощности;

6. независимый расцепитель (дистанционное отключение выключателя).

Первые два типа устанавливаются во всех трех полюсах, остальные — по одному на выключатель. Токи уставки, а также выдержки времени токовых расцепителей могут быть регулируемыми. В одном выключателе могут применять один или несколько типов токовых расцепителей и дополнительно к ним расцепитель минимального напряжения, независимый расцепитель и электромагнит включения.

По времени срабатывания электромагнитные и аналогичные им электронные расцепители имеют четыре разновидности:

1.расцепители, обеспечивающие срабатывание А.В. за время намного меньше 0,01с, и отключение тока КЗ раньше, чем он достигнет своего ударного значения. Такие А.В. называют токоогораничивающие.

2.расцепители, обеспечивающие отключение тока КЗ при первом прохождении тока через нулевое значение tc=0,01с.

3.нерегулируемые расцепители, время срабатывания которых превышает 0,01с;

4.расцепители с регулируемой выдержкой времени (0,1-0,7с), позволяющие добиться замедленной работы относительно других А.В. той же сети, называют селективными.

Расцепители тока утечки применяют для быстрого отключения участков сети, в которых из-за нарушения изоляции или прикосновения людей к проводникам возник ток утечки на землю. При этом ток уставки расцепителя выбирают в пределах от 10 до30 мА, а время зависимости от напряжения в пределах от 10 до100мс. Эту защиту в наст. время считают более эффективной от защиты людей от поражения электрическим током.

Расцепители минимального напряжения применяют в целях отключения источников питания при прекращении ими питания сети ( перед АВР), а также в целях отключения электроприемников, самозапуск которых при автоматическом восстановлении напряжения нежелателен. Напряжение срабатывания расцепителя выбирают в пределах от 0,8 до 0,9 Uном, время срабатывания – в соответствии с требованиями систем автоматического восстановления питания сети.

Независимые расцепители применяют для местного дистанционного и автоматического отключения А.В. при срабатывании внешних защитных устройств.

Расцепители обратного тока или обратной мощности применяют для защиты генераторов, работающих на электрическую систему от выпадения синхронизма.

Отключение может происходить без выдержки времени или с выдержкой. По собственному времени отключения (промежуток от момента, когда контролируемый параметр превзошел установленное для него значение, до момента начала расхождения контактов) различают нормальные выключатели (tсо=0,02-1с), выключатели с выдержкой времени (селективные) и быстродейтвующие выключатели tсо

Читать еще:  Автоматический выключатель защиты двигателя 100а

Принцип работы привода масляного выключателя

II . ПРОВЕРКА И РЕГУЛИРОВКА ВКЛЮЧАЮЩЕЙ СПОСОБНОСТИ МАСЛЯНЫХ ВЫКЛЮЧАТЕЛЕЙ С ПРУЖИННЫМИ ПРИВОДАМИ — ЧАСТЬ 2

Силы инерции, действующие на участке хода подвижных контактов в неподвижных, выключателей ВМП-10К и ВМГ-133-II с приводами ППМ-10 составляют значительную долю от полной силы, преодолевающей противодействующую силу выключателей. Для этой цели привод ППМ-10 снабжен массивным маховиком, который разгоняется в начале включения, когда противодействующий момент выключателя значительно меньше тягового момента привода, и тормозится в конце

включения. При торможении подвижных частей силы инерции возрастают.

Работоспособность привода оценивается по величине работы, совершаемой включающими пружинами при медленном повороте вала привода. Эта работа называется статической. По величине она должна быть больше статической работы включения выключателя.

Для определения среднего момента у привода Г1П-61 нужно провести на статической характеристике горизонтальную линию так, чтобы площади, ограниченные на графике кривой 1 и горизонтальной линией и расположенные по обе стороны от этой линии, были равны между собой. На рис. 10 эти площади заштрихованы. Точка пересечения горизонтальной линии с вертикальной осью графика определит Мср. Как видно из графика, Мср I привода ПП-61 равен 10 кГ-м, т. е. статическая работа привода ПП-61 соответствует работе привода ПГ1М-10. Привод КППМ имеет несколько меньшую величину статической работы.

Работа включения выключателей ВМП-10 и ВМГ-133, определенная по статическим характеристикам на рис. 11, равна 16 кГ • м. При этом, работа включения после замыкания контактов у выключателя ВМП-10К равна 11 кГ-м, а у выключателя ВМГ-133-II—6,5 кГ-м. Для выключателей ВМП-10К и ВМГ-133-II статическая работа включения нормально находится в пределах 14—18 кГ-м.

Как видно из сравнения, статическая работа пружинных приводов значительно превышает статическую рабо-| ту включения выключателей ВМП-10К и ВМГ-133-II. Казалось бы, что для включения этих выключателей не нужно иметь приводы с такой работоспособностью, какой обладают приводы ПП-61 и ППМ-10 Однако при включении на короткое замыкание работа выключателя .’ значительно увеличивается прежде всего за счет электродинамических сил, препятствующих включению вы-I ключателя. Ориентировочно для выключателей ВМП-10К

4 и ВМГ-133-II работа электродинамических сил в каждой розетке составляет 1 кГ-м. После отключения предельного тока короткого замыкания статическая работа включения выключателей на- участке хода подвижных контактов в розетках возрастает у выключателей ВМП-10 примерно в 1,2—1,4 раза, а у выключателей ВМГ-133—в 1,5—2 раза. Дополнительную работу нужно совершить также на преодоление сил трения в узлах соединения привода с выключателем, которая примерно равна 2 кГ • м. Таким образом, суммарная работа выключателя при включении его на короткое замыкание может быть равна 26 кГ-м, что ненамного меньше статической работы привода. Если еще учесть, что небольшая часть энергии привода расходуется при ударе включающего рычага с рычагом вала привода, то для включения выключателей ВМП-10К и ВМГ-133 на номинальный ток включения (20 ка) необходимо иметь привод с работоспособностью, равной примерно 30 кГ‘М.

Испытания выключателей на коммутационную способность показали, что выключатель ВМП-10К. с приводом ППМ-10 при угле закручивания включающих пружин 105° и временем действия релейной защиты не более 0,5 сек может включить ток короткого замыкания не выше 15 ка, а при угле закручивания включающих пружин 90° —не выше 10 ка. Привод ПП-61 с той же работоспособностью и в тех же условиях может включить выключатель ВМП-10К на ток короткого замыкания 20 ка. Меньшая включающая способность выключателя с приводом ППМ-10 объясняется неудовлетворительной статической характеристикой привода. Величины коммутационной способности выключателей типа ВМП-10 с различными приводами приведены в приложении.

Значительное превышение включающих моментов выключателей ВМП-10К. и ВМГ-133 над тяговыми моментами привода ППМ-10 в конце включения представляют большую опасность для выключателей, если при их включении на короткое замыкание механизм привода не сядет на защелку. Под действием отключающих пружин подвижные контакты могут выйти из розетки и выключатель может взорваться от действия электрической дуги между контактами, если не будет отключен защитой мгновенного действия.

Статическая работа привода ПП-61 по данным Рижского опытного завода Латвэнерго должна быть не менее 30 кГ-м. При проверке ряда приводов ПП-61 на Московском заводе «Электрощит» в 1967 г. выявлено большое количество приводов с работоспособностью ниже указанной величины. Снижение работоспособности приводов произошло из-за установки более длинных включающих пружин, чем это требуется по чертежу (рис. 14). Так, вместо включающей пружины длиной 444 мм на заводе-изготовителе устанавливали пружины длиной до 459 мм.

Знание характеристик пружинных приводов и выключателей позволяет понять, почему величина скорости включения в момент замыкания контактов недостаточно характеризует включающую способность выключателя. Возьмем для примера выключатель типа ВМП-10К со статической работой включения 16 кГ-м и приводом ПП-61 в одном случае с величиной статической работы 31 кГ-м, а в другом 25 кГ -м. Из проведенных испытаний известно, что привод ПП-61 в первом случае может включить выключатель на номинальный ток короткого замыкания, а во втором случае не может. По измеренным скоростям включения в момент замыкания контактов ремонтный персонал может не обнаружить выключатель с недостаточной включающей способностью, так как величины указанных скоростей будут ненамного отличаться одна от другой. Значительного снижения скорости в момент замыкания контактов во втором случае

не произойдет, так как работа включения выключателя до замыкания контактов составляет всего 1/3 от всей работы включения выключателя. Основная работа приводом совершается на участке хода подвижных контактов в розетках. На этом участке скорость включения выключателя с приводом, имеющим недостаточную работоспособность, будет снижаться более резко, чем при нормальном приводе. Разница в величине скорости включения будет особенно заметной в момент перехода подвижных контактов через включенное положение выключателя. Поэтому на недостаточную работоспособность привода ПП-61 в этом случае укажет не величина скорости замыкания контактов, а величина скорости в момент перехода подвижных контактов через включенное положение.

В некоторых случаях привод, обладающей меньшей работоспособностью, может развить у выключателя более высокую скорость в момент замыкания контактов, если форма статической характеристики этого привода такова, что его статическая работа до замыкания контактов выключателя будет больше, чем у привода с более высокой работоспособностью. Так, например, скорость включения в момент замыкания контактов у выключателя с приводом КППМ может быть выше, чем

с приводом Г1П 61, хотя включающая способность выключателя в первом случае будет ниже, за счет нерационального распределения вращающих (тяговых) моментов у привода КППМ и несколько меньшей величиной его суммарной работы. Сравнение скоростей в момент перехода подвижных контактов через включенное положение и в этом случае выявило бы более низкую скорость у выключателя с приводом КППМ.

Могут быть также случаи, когда увеличение включающей способности пружинного привода приводит не к увеличению скорости включения в момент замыкания контактов, а к ее уменьшению. Такие случаи наблюдаются у выключателей, скорость включения которых снижается в середине хода контактов. На рис. 15 в качестве примера представлены результаты измерения скорости включения выключателя ВМГ-133-II с приводом УПГП, на котором для его усиления была заменена средняя включающая пружина из проволоки диаметром

5 мм более сильной пружиной из проволоки диаметром

6 мм. Скорость включения измерялась при одинаковом предварительном натяжении включающих пружин. Как видно из виброграммы, скорость включения в момент замыкания контактов после замены пружины уменьшилась с 1,98 до 1,75 м/сек, несмотря на увеличившуюся включающую способность выключателя, о чем свидетельствует увеличение скорости включения в положение включено с 0,1 до 1,35 м/сек, увеличение перевключения подвижных контактов с 0,5 до 8 мм и уменьшение времени включения выключателя с 0,19 до 0,14 сек.

Снижение скорости включения в середине хода контактов у выключателей с пружинными приводами вызвано, как правило, не затиранием подвижных частей, а особенностью характеристики пружинного привода и влиянием поворотного груза, которые в значительной мере проявляются при применении рычагов на валу выключателя и валу привода с соотношением длин, равным 2:1. Замедление движения контактов в середине хода особенно проявляется у выключателей с приводами ППМ-10. Это объясняется тем, что подвижные части привода ППМ-10, непосредственно связанные с включающими пружинами (ведущие части), до зацепления с подвижными частями привода, жестко связанными с выключателем (ведомые части), развивают в начальный момент большую скорость и сообщают ведомым частям значительное ускорение. Ведомые части привода, получившие большое ускорение, могут отрываться от ведущих частей и уходить вперед. С увеличением противодействия отключающих пружин наступает замедление движения контактов до тех пор, пока ведущие части снова не увеличат скорость включения выключателя.

У выключателей со значительной величиной работы включения на участке хода подвижных контактов в неподвижных можно увеличить скорость включения в момент замыкания контактов путем установки на вал привода более длинного рычага, чем это требуется по рекомендованной заводом кинематической схеме соединения привода с выключателем. Хотя в этом случае скорость замыкания контактов повышается, включающая способность выключателя, как правило, снижается. Так, на одном выключателе ВМГ-133-И с приводом УПГП за счет установки на вал привода рычага длиной 90 мм вместо 60 мм удалось добиться значительной скорости включения в момент замыкания контактов

(2,6 м/сек) при предварительном натяжении включающих пружин 75 мм. Скорость же в положение включено была всего 0,3 м/сек, а перевключение 1,5 мм, что свидетельствует о низкой включающей способности выключателя. Действительно, при уменьшении предварительного натяжения включающих пружин всего на 15 мм выключатель не смог включиться вхолостую.

Приведенные примеры показывают, что оценивать включающую способность выключателей ВМП-10 и ВМГ-133 с пружинными приводами только по величине скорости включения в момент замыкания контактов недостаточно. При анализе виброграмм необходимо учитывать также скорость включения в положение включено, максимальную скорость включения и величину пере-включения подвижных контактов.

Предельная величина перевключения зависит от конструкции буферного устройства и его регулировки. При включении выключателя ВМГ-133 вхолостую его подвижные части должны, как правило, доходить до упора. Сжатие пружинного буфера до упора у выключателя ВМГ-133 происходит при перевключении контактов не менее 8—10 мм. При недостаточной работоспособности привода величина перевключения будет ниже. Отсутствие перевключения указывает на минимальную включающую способность выключателя.

Читать еще:  Выключатель стационарного исполнения с ручным дистанционным приводом

Если небольшая величина перевключения контактов характеризует недостаточную способность выключателя, то предельная величина перевключения еще не указывает на нормальную включающую способность, так как у многих выключателей работа, совершаемая приводом на доведение подвижных частей выключателя от включенного положения до упора, меньше работы, необходимой для преодоления электродинамических сил, возникающих при включении выключателя на короткое замыкание.

Кроме указанного, существуют и другие способы проверки включающей способности выключателей. Например, путем приложения к подвижным частям выключателя дополнительной силы с помощью пружины можно увеличить работу включения выключателя настолько, что она будет равна работе выключателя при включении его на короткое замыкание. Если эту силу прикладывать на участке хода подвижных контактов в неподвижных (розетках), то включение такого выключа-

геля будет примерно соответствовать условиям включения его на короткое замыкание. Таким образом, можно проверять работу выключателя в условиях, имитирующих включение выключателя на короткое замыкание.

Как уже указывалось, работа электродинамических сил в каждой розетке выключателей ВМП-10 и ВМГ-133 при включении их на номинальный ток короткого замыкания составляет примерно 1 кГ • м. Следовательно, чтобы создать для выключателя ВМГЛЗЗ на ходе контактов 40 мм дополнительную работу в 3 кГ• м, необходимо приложить к подвижным контактам силу, равную

3 кГ • м: 0,04 м=75 кГ.

На рис. 16 показано одно из возможных устройств для проверки включающей способности выключателя ВМГ-133 указанным способом.

Натяжение пружины регулируется винтом так, чтобы она воздействовала на подвижные контакты выключателя с силой 75—80 кГ. Включающая способность выключателя будет считаться достаточной, если он включится с таким устройством с посадкой механизма привода на защелку.

Отличие выключателя нагрузки от разъединителя

Для людей, профессионально связанных с электротехникой, знакомство с коммутирующими устройствами часто начинается с рубильника. Рубильник — это висящий на стене металлический шкаф с рукояткой, на котором красной краской написано «Осторожно! Электрическое напряжение». Позже многие узнают, что такого устройства с названием «рубильник» не существует, и правильное название — «выключатель-разъединитель».

Между тем, среди устройств среднего напряжения от 6 до 35 кВ мы обнаружим как выключатели, так и разъединители. И сразу возникает вопрос: чем отличается выключатель от разъединителя?

В действительности ответ на этот вопрос очень прост.

*) Если вас заинтересовало, что за странное устройство космической наружности изображено на картинке в начале материала, то это всего лишь элегазовый выключатель нагрузки.

Зачем нужен разъединитель

Разъединитель — это коммутирующее устройство, единственное назначение которого — создание видимого разрыва электрической цепи при проведении ремонтных или регламентных работ.

Своим появлением разъединители обязаны нормативным документам: «Правила устройства электроустановок» (ПУЭ) и «Правила технической эксплуатации электроустановок потребителей» (ПТЭ). Эти регламенты предписывают при проведении любых работ на электрооборудовании, кроме отключения линии, создать видимый разрыв цепи и обеспечить заземление участка, на котором производятся работы.

Создание видимого разрыва вызвано тем, что при отключении линии не всегда есть возможность убедиться в полном отсутствии напряжения в цепи.

Например, при отключении напряжения с помощью вакуумных, масляных или элегазовых выключателей нельзя быть уверенным, что цепь действительно полностью разомкнута, так как контакты таких выключателей находятся в баке с дугогасящей средой (масло, элегаз, вакуум), что исключает визуальную проверку их состояния.

Кроме создания видимого разрыва цепи, требуется также заземлить участок линии, на котором проводятся работы. Для этого можно использовать специальное устройство — заземлитель. Однако, чаще всего эту функцию возлагают на разъединитель, снабжая его заземляющими контактами (ножами), которые синхронно с размыканием главных контактов разъединителя заземляют линию, на которой установлен разъединитель.

Количество и расположение заземляющих ножей может быть разным. Заземляющие ножи могут располагаться (а) со стороны входящей линии, (б) со стороны отходящей линии, (в) с двух сторон от разъединителя.

Учитывая, что разъединитель может отключать только обесточенную линию, заземление линии не может привести к опасным последствиям.

УЗНАТЬ ЦЕНУ

Отправьте запрос в любой форме на электронную почту com@tmtrade.ru . В течение дня мы подготовим для вас предложение со стоимостью и сроком поставки. Или просто позвоните нам по телефону +7 910-973-00-28

Назначение выключателя нагрузки

В отличие от разъединителя, выключатель нагрузки предназначен для отключения линии, находящейся под напряжением.

При размыкании или замыкании контактов, находящихся под напряжением, возникает дуговой разряд, который может оплавить контакты выключателя нагрузки и тем самым вывести его из строя. Поэтому нужно предотвратить появление дугового разряда или ослабить его.

Чтобы погасить или ослабить дуговой разряд, воздушную среду между контактами выключателя нагрузки заменяют на более безопасную среду. В этом и проявляется основное отличие выключателя нагрузки от разъединителя — контакты выключателя нагрузки находятся в инертной среде, препятствующей развитию электрической дуги.

В настоящее время существует несколько вариантов защиты выключателей от электрической дуги:

  • Автогазовая среда — это самое остроумное решение. Контакты выключателя находятся внутри полимерного кожуха, который при возникновении дугового разряда начинает выделять газы, препятствущие развитию дуги. Этот класс коммутирующих устройств называется автогазовые выключатели нагрузки. Автогазовые выключатели — самые доступные по цене, но они могут работать только при небольших токах, как правило, до 630 А.
  • Масляная среда — это самое старое решение. Контакты выключателя в этом случае помещаются в бак с минеральным маслом, которое препятствует образованию дуги. Масляные выключатели начали применяться в России с 1925 года, однако в настоящее время они постепенно выходят из употребления, уступая место вакуумным выключателям.
  • Элегазовая среда — использование в качестве внутренней среды выключателя гексафторида серы SF6. Гексафторид серы (элегаз) бесцветен, не токсичен и не горюч. Свое название он получил благодаря высоким электроизолирующим и дугогасящим свойствам, а также высокому напряжению пробоя. Однако из-за высоких затрат на утилизацию, недостаточной компактности элегазовых устройств, а также из-за образующихся в процессе их работы токсичных соединений производители начали отказываться от элегазовых выключателей в пользу вакуумных выключателей.
  • Вакуум — это идеальная среда, которая исключает образрвание дугового разряда. Контакты в этом случае находятся внутри вакуумной катеры. Представителями этого класса устройств является не только широко распространенные вакуумные выключатели, но и выключатели нагрузки ВНВР, которые очень похожи на автогазовые выключатели, но отличаются от них наличием вакуумных камер вместо полимерных догогасительных камер.

Таким образом, основное отличие выключателя нагрузки от разъединителя — это способность отключать линию под наряжением путем подавления дугового разряда инертной средой между контактами выключателя.

Какие нагрузки испытывают выключатель нагрузки и разъединитель

Конструкция коммутирующего устройства обусловлена теми нагрузками, которое оно испытывает. Это может быть высокое напряжение, большой ток (в том числе, ток короткого замыкания), дуговой разряд. Все это влияет на конструкцию коммутирующего устройства

Например, разъединитель размыкает заранее обесточенную линию, поэтому отсутствует электрическое напряжение. Однако в замкнутом состоянии разъединитель может пропускать большие токи. Например, при номинальном напряжении 10 кВ ток через разъединитель может достигать 8000 А.

В то же время выключатель нагрузки может отключать линию под напряжением, и его контакты могут противостоять действию дугового разряда. Поэтому выключатели нагрузки рассчитаны на небольшие токи, как правило, до 630 А.

Ошибочные действия персонала при работе с разъединителям могут приводить к аварийным ситуациям, выходу из строя оборудования и поражению людей электрическим током. Например:

  • Отключение или включение разъединителя при включенной линии, приедет к дуговому разряду между контактами разъединителя и к выходу разъединителя из строя.
  • Включение разъединителя при включенной линии может привести к поражению людей электрическим током.
  • Включение заземляющих ножей выключателя нагрузки или разъединителя при включенной линии приведет к короткому замыканию и выходу из строя оборудования, находящегося на линии.

Чтобы не возникали аварийные ситуации, применяют механические и электромеханические блокировки ножей разъединителей и выключателей нагрузки.

Например, заземлить линию возможно только в том случае, если главные ножи разъединителя находятся в разомкнутом состоянии. Применяются также электромеханические блокировки, когда электромагнитный замок препятствует отключению разъединителя, если линия находится под напряжением.

Связанные материалы

  • Бесплатная экспертиза
  • Проектирование
  • Электромонтажные работы
  • Поставки электрооборудования в Монголию
  • Отгрузка оборудования на космодром «Восточный»
  • Модернизация (ретрофит) КСО и КРУ
  • Доставка и логистика
  • Выключатели нагрузки ВНВР-10 пополнили ассортимент
  • Приводы разъединителей внутренней установки
  • Выключатели нагрузки ВНА, ВНР и ВНВР на 10 кВ

Отгрузка оборудования на космодром «Восточный»

Космическая отрасль России развивается бурными темпами и требует большого количества инновационного оборудования, в том числе, электротехнического.

ООО «Тяжмаштрейд» выполнило заказ Центра эксплуатации объектов наземной космической инфраструктуры космодрома «Восточный» на поставку комплектующих для выключателей нагрузки.

Поставки электрооборудования в Монголию

С 2014 года компания «Тяжмаштрейд» поставляет электротехническое оборудование промышленного назначения в страны Евразийского Экономического Союза (ЕАЭС) — Белоруссию, Казахстан, Киргизию, Узбекистан.

В 2021 году наша компания начала экспортные поставки оборудования в другие страны мира. В этом году отгружены конденсаторные установки и разъединители в Монголию.

Начато производство разъединителей РЛК-20 кВ

К идее производства линейных разъединителей на 20 кВ мы обращались неоднократно с 2017 года. Было рассмотрено несколько вариантов конструкций разъединителей: РЛНД-20, РЛР-20, РЛК-20.

В 2020 году мы организовали серийный выпуск линейных разъединителей на номинальное напряжение 20 кВ, остановившись на хорошо зарекомендовавшей себя конструкции качающегося типа РЛК-20.

Отгрузка нового реклоузера 35 кВ OSM38 в Новосибирск

Реклоузеры OSM38 на напряжение 35 кВ пока только завоевывают российский рынок, в отличие от реклоузеров OSM15 на 10 кВ, которые уже широко распространены во всех регионах нашей страны.

Поэтому отгрузка покупателям каждой новой партии реклоузеров на 35 кВ представляет для нас радостное событие. Вместе с другим оборудованием реклоузер отправится из Новосибирска осваивать Дальний Восток.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector