Oncool.ru

Строй журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Рассчитать автоматический выключатель по току короткого замыкания

Расчет автомата по мощности

Выбор автоматического выключателя

Для увеличения безопасности, электропроводку в квартире нужно делить на несколько линий. Это отдельные автоматы для освещения, розеток кухни, остальных розеток. Бытовые приборы большой мощности с повышенной опасностью (электроводонагреватели, стиральные машины, электрические плиты), нужно включать через УЗО.

Удобный монтаж автоматов в щитке

УЗО вовремя среагирует на утечку тока и отключит нагрузку. Для правильного выбора автомата важно учесть три основных параметра; – номинальный ток, коммутационную способность отключения тока короткого замыкания и класс автоматов.

Расчетный номинальный ток автомата – это максимальный ток, который рассчитан на длительную работу автомата. При токе выше номинального, происходит отключение контактов автомата. Класс автоматов означает кратковременную величину пускового тока, когда автомат еще не срабатывает.

Пусковой ток многократно превосходит номинальное значение тока. Все классы автоматов имеют разные превышения пускового тока. Всего имеется 3 класса для автоматов различных марок:

– класс В, где пусковой ток может быть больше номинального от 3 до 5 раз;

– класс С имеет превышение тока номинала в 5 – 10 крат;

– класс D с возможным превышением тока номинального значения от 10 до 50 раз.

Маркировка автоматического выключателя

В домах, квартирах используют класс С. Коммутационная способность определяет величину тока короткого замыкания при мгновенном отключении автомата. У нас используются автоматы с коммутационной способностью 4500 ампер, зарубежные автоматы имеет ток к. з. 6000 ампер. Можно использовать оба типа автоматов, российские и зарубежные.

Расчет автоматического выключателя

Выбирать автоматы можно с расчетом по току нагрузки или сечению электропроводки.

Расчет автомата по току

Подсчитываем всю мощность нагрузок на автомат. Плюсуем мощности всех потребителей электричества, и по следующей формуле:

получаем расчетный ток автомата.

P- суммарная мощность всех потребителей электричества

U – напряжение сети

Округляем расчетную величину полученного тока в большую сторону.

Расчет автомата по сечению электропроводки

Чтобы выбрать автомат можно воспользоваться таблицей 1. Выбранный по сечению электропроводки ток, уменьшают до нижней величины тока автомата, для снижения нагрузки электропроводки.

Выбор номинального тока по сечению кабеля. Таблица №1

Для розеток автоматы берут на ток 16 ампер, так как розетки рассчитаны на ток 16 ампер, для освещения оптимальный вариант автомата 10 ампер. Если вы не знаете сечение электропроводки, тогда его нетрудно рассчитать по формуле:

S – сечение провода в мм²

D – диаметр провода без изоляции в мм

Второй метод расчета автоматического выключателя является более предпочтительным, так как он защищает схему электропроводки в помещении.

Калькулятор для расчета токов короткого замыкания

Онлайн расчет тока сети

Данный онлайн калькулятор позволяет произвести расчет тока по мощности электросети с любыми параметрами. Присутствует возможность задать такие параметры как тип сети (однофазная или трехфазная) напряжение, мощность, а так же коэффициент мощности (cosφ).
Полученное, в результате расчета, значение тока сети можно использовать для выбора автоматического выключателя, дифавтомата, УЗО, реле напряжения, магнитного пускателя и т.д. либо для определения требуемого сечения кабеля.

Ряд стандартных значений номинальных токов различных аппаратов защиты, а так же длительно допустимых токов алюминиевых и медных кабелей приведены в таблицах ниже.

Не нашли на сайте статьи на интересующую Вас тему касающуюся электрики? Напишите нам здесь. Мы обязательно Вам ответим. Оказался ли полезен для Вас данный онлайн калькулятор? Или может быть у Вас остались вопросы? Напишите нам в комментариях!

Расчет токов короткого замыкания в сетях 0,4кВ

Ни один проект по электрике не обходится без расчетов. Одним из них является расчет токов короткого замыкания. В статье рассмотрим пример расчета в сетях 0,4кВ. Файл с примером расчета в Word вы сможете скачать ближе к концу статьи, а также выполнить расчет самостоятельно не покидая сайта (в конце статьи есть онлайн-калькулятор).

Исходные данные: ГРЩ здания запитан от трансформаторной подстанции с двумя трансформаторами по 630кВА. где: ЕC – ЭДС сети; Rт, Xт, Zт – активное, реактивное и полное сопротивления трансформатора; Rк, Xк, Zк – активное, реактивное и полное сопротивления кабеля; Zц – сопротивление петли фаза-нуль для кабеля; Zш – сопротивление присоединения шин; K1 – точка короткого замыкания на шинах ГРЩ.

Параметры трансформатора: Номинальная мощность трансформатора Sн = 630 кВА, Напряжение короткого замыкания трансформатора Uк% = 5,5%, Потери короткого замыкания трансформатора Pк = 7,6 кВт.

Параметры питающей линии: Тип, число (Nк) и сечение (S) кабелей АВВГнг 2x (4×185), Длина линии L = 208 м

Реактивное сопротивление трансформатора:

Активное сопротивление трансформатора:

Онлайн-калькулятор для расчет токов короткого замыкания

Для тех, кому нужно быстро рассчитать токи короткого замыкания, сделал калькулятор прямо на сайте. Теперь можете посчитать токи КЗ онлайн. Щелкайте переключателям, двигайте ползунки, выбирайте значения из списка — всё моментально автоматически пересчитается.

Удельные сопротивления меди и алюминия в онлайн-калькуляторе приняты в соответствии с рекомендациями ГОСТ Р 50571.5.52-2011, Часть 5-52 (1,25 удельного сопротивления при 20°С):

  • удельное сопротивление меди — 0,0225 Ом·мм/м
  • удельное сопротивление алюминия — 0,036 Ом·мм/м.

Если возможностей калькулятора вам недостаточно (нужно несколько участков кабелей разного сечения, у вас другие трансформаторы или просто расчет должен быть оформлен в Word), то смело нажимайте кнопку и заказывайте.

Получите оформленный расчёт в Word (файл docx без автоматизации) в соответствии с вашими исходными данными.

Расчет токов короткого замыкания

Расчет токов короткого замыкания производится согласно ГОСТ 14794-79 (п.2.12.2-2.12.3), а именно:

Допустимое действующее значение периодической составляющей тока короткого замыкания Iк, доп кА, определяется по формуле:

(при расчете Iк, доп для сдвоенного реактора в формул>’ (1) вместо X подставляется Xo,s, а в случаях использования сдвоенного реактора с последовательно соединенными ветвями подставляется Хс),

где U — класс напряжения реактора, кВ;

X — номинальное индуктивное сопротивление одинарного реактора, Ом;

Х0,5 — номинальное индуктивное сопротивление сдвоенного реактора (сопротивление ветви сдвоенного реактора). Ом;

Хс — индуктивное сопротивление сдвоенного реактора, Ом;

Iн — номинальный ток реактора, кА;

Iс — установившийся условный ток короткого замыкания в сети без реактора в том месте, где реактор должен устанавливаться, при номинальном напряжении сети, соответствующем классу напряжения реактора, кА. Значение Iс должно быть принято следующее: 125 кА — для всех реакторов с горизонтальным расположением фаз и для всех реакторов с номинальным током, равным или больше 1000 А, при номинальном индуктивном сопротивлении, равном или превышающем 0,25 Ом.

90 кА — для реакторов с вертикальным и ступенчатым расположением фаз с номинальным током меньше 1000 А, при номинальном индуктивном сопротивлении, равном или превышающем 0,40 Ом.

70 кА — для всех остальных реакторов.

Читать еще:  Выключатели масляные все высоковольтные

Максимальное мгновенное значение тока электродинамической стойкости, применительно к которому выполняются расчеты и проводятся испытания на электродинамическую стойкость, определяется по формуле:

где Iдин— максимальное мгновенное значение тока электродинамической стойкости для одинарных реакторов, а также для сдвоенных реакторов при протекании тока в одной ветви или в обоих ветвях в согласном направлении, кА.

Например:

Определение токов короткого замыкания для реактора РТСТ-10-1600-0,4 У3.

Подставим значения в формулу расчета тока термической стойкости:

Полученное значения тока подставим в формулу расчета тока динамической стойкости (ударн. ток.кз):

Расчет силы тока по мощности, напряжению, сопротивлению

Бесплатный калькулятор расчета силы тока по мощности и напряжению/сопротивлению – рассчитайте силу тока в однофазной или трехфазной сети в ОДИН КЛИК!

Если вы хотите узнать как рассчитать силу тока в цепи по мощности, напряжению или сопротивлению, то предлагаем воспользоваться данным онлайн-калькулятором. Программа выполняет расчет для сетей постоянного и переменного тока (однофазные 220 В, трехфазные 380 В) по закону Ома. Рекомендуем без необходимости не изменять значение коэффициента мощности (cos φ) и оставлять равным 0.95. Знание величины силы тока позволяет подобрать оптимальный материал и диаметр кабеля, установить надежные предохранители и автоматические выключатели, которые способны защитить квартиру от возможных перегрузок. Нажмите на кнопку, чтобы получить результат.

Смежные нормативные документы:

  • СП 256.1325800.2016 «Электроустановки жилых и общественных зданий. Правила проектирования и монтажа»
  • СП 31-110-2003 «Проектирование и монтаж электроустановок жилых и общественных зданий»
  • СП 76.13330.2016 «Электротехнические устройства»
  • ГОСТ 31565-2012 «Кабельные изделия. Требования пожарной безопасности»
  • ГОСТ 10434-82 «Соединения контактные электрические. Классификация»
  • ГОСТ Р 50571.1-93 «Электроустановки зданий»

Калькулятор электротехнических величин

Хотите быстро рассчитать силу тока, напряжение, мощность или другие электрические величины. Воспользуйтесь калькулятором электрических величин. С его помощью Вы сможете без особых трудов посчитать:

  1. Силу тока, напряжение, мощность, используя Закон Ома.
  2. Рассчитать напряжение, при котором может работать резистор.
  3. Напряжение однородного поля (плоский конденсатор).
  4. Сопротивление цепи при параллельном соединении.
  5. Определение емкости при параллельном соединении.
  6. Определение емкостного сопротивления конденсатора переменному току.
  7. Индуктивность катушек соединенных параллельно, без взаимоиндукции.
  8. Реактивное сопротивление индуктивности.
  9. Мощность в цепи.
  10. Мощность, выделяющаяся в нагрузочном резисторе.

В архиве находятся две версии программы: 1. Grand 1.2 и Grand 1.3.

В версию Grand 1.3 добавлены, краткие справочные материалы по основным электрическим величинам. Когда будете запускать программу Grand 1.3, возможно, будет ругаться антивирусник, не волнуйтесь, программа проверена и не содержит вредоносного ПО.

Поделиться в социальных сетях

Если вы нашли ответ на свой вопрос и у вас есть желание отблагодарить автора статьи за его труд, можете воспользоваться платформой для перевода средств «WebMoney Funding» .

Данный проект поддерживается и развивается исключительно на средства от добровольных пожертвований.

Проявив лояльность к сайту, Вы можете перечислить любую сумму денег, тем самым вы поможете улучшить данный сайт, повысить регулярность появления новых интересных статей и оплатить регулярные расходы, такие как: оплата хостинга, доменного имени, SSL-сертификата, зарплата нашим авторам.

Программа выбора емкости конденсатора для электродвигателя, позволяет рассчитать рабочую емкость С, при.

Данный калькулятор расчета основных измеряемых величин в электротехнике, выполненный в программе Microsoft.

Представляю вашему вниманию программу проверки трансформаторов тока (ТТ) на 10%-ю погрешность по.

В данной статье я хотел бы Вас познакомить с программой SICHR версии 16 от (Чехия).

Доброго времени суток! Представляю Вашему вниманию последнею версию программы по расчету уставок.

Формулы расчета силы тока

Электрический ток — это направленное упорядоченное движение заряженных частиц. Сила тока (I) — это, количество тока, прошедшего за единицу времени сквозь поперечное сечение проводника. Международная единица измерения — Ампер (А / A).

— Сила тока через мощность и напряжение (постоянный ток): I = P / U — Сила тока через мощность и напряжение (переменный ток однофазный): I = P / (U × cosφ) — Сила тока через мощность и напряжение (переменный ток трехфазный): I = P / (U × cosφ × √3) — Сила тока через мощность и сопротивление: I = √(P / R) — Сила тока через напряжение и сопротивление: I = U / R

  • P – мощность, Вт;
  • U – напряжение, В;
  • R – сопротивление, Ом;
  • cos φ – коэффициент мощности.

Пример приближенного расчета токов короткого замыкания в сети 0,4 кв

Часто инженерам для проверки отключающей способности защитных аппаратов (автоматические выключатели, предохранители и т.д.), нужно знать значения токов короткого замыкания (ТКЗ). Но на практике не всегда есть возможность быстро выполнить расчет ТКЗ по ГОСТ 28249-93, из-за отсутствия данных по различным сопротивлениям, особенно это актуально при расчете однофазного тока короткого замыкания на землю.

Для решения этой задачи, можно использовать приближенный метод расчета токов короткого замыкания на напряжение до 1000 В, представленный в книге: «Е.Н. Зимин. Защита асинхронных двигателей до 500 В. 1967 г.».

Рассмотрим на примере расчет ТКЗ в сети 0,4 кВ для небольшого распределительного пункта, чтобы проверить отключающую способность предохранителей, используя приближенный метод расчета ТКЗ представленный в книге Е.Н. Зимина.

Обращаю Ваше внимание, что в данном примере будет рассматриваться, только расчет ТКЗ для предохранителей FU1-FU6 из условия обеспечения необходимой кратности тока короткого замыкания.

Известно, что двигатели получают питание от трансформатора мощность 320 кВА. Кабель от трансформатора до РЩ1 проложен в земле, марки АСБГ 3х120+1х70, длина линии составляет 250 м. На участке от распределительного щита ЩР1 до распределительного пункта РП, проложен кабель марки АВВГ 3х25+1х16, длина линии составляет 50 м. Однолинейная электрическая схема представлена на рис.1.

Рис.1 – Однолинейная электрическая схема 380 В

Расчет токов к.з. для точки К1

Для проверки на отключающую способность предохранителя FU1, нужно определить в месте его установки ток трехфазного короткого замыкания.

1. Определяем активное и индуктивное сопротивление фазы трансформатора:

  • Sт – мощность трансформатора, кВА;
  • с – коэффициент, равный: 4 – для трансформаторов до 60 кВА; 3,5 – до 180 кВА; 2,5 – до 1000 кВА; 2,2 – до 1800 кВА;
  • d – коэффициент, равный: 2 – для трансформаторов до 180 кВА; 3 – до 1000 кВА; 4 – до 1800 кВА;
  • k = Uн/380, Uн — номинальное напряжение на шинах распределительного пункта.

2. Определяем активное и индуктивное сопротивление кабеля марки АСБГ 3х120+1х70:

  • L – длина участка, км;
  • Sф и S0 – сечение проводника фазы и соответственно нулевого провода, мм2;
  • а – коэффициент, равный: 0,07 – для кабелей; 0,09 – для проводов, проложенных в трубе; 0,25 – для изолированных проводов, проложенных открыто;
  • b – коэффициент, равный: 19 – для медных проводов и кабелей; 32 – для алюминиевых проводов и кабелей;

3. Определяем полное сопротивление фазы:

4. Определяем ток трехфазного короткого замыкания:

Читать еще:  Выключатель аварийной сигнализации 3710010

Для проверки на отключающую способность предохранителей FU2 – FU6, нужно определить однофазный ток короткого замыкания на землю в конце защищаемой линии.

Расчет токов к.з. для точки К2

5. Определяем суммарные активные и индуктивные сопротивления кабелей цепи короткого замыкания:

6. Определяем полное сопротивление петли фаза-нуль:

где: Zт(1) = 22/Sт*k2 – расчетное полное сопротивление трансформатора току короткого замыкания на землю, k=Uн/380.

7. Определяем ток однофазного короткого замыкания на землю:

Аналогично выполняем расчет ТКЗ для точек К3-К6, результаты расчетов заносим в таблицу 1. Зная токи к.з., можно теперь выбрать плавкие вставки для предохранителей FU1 – FU6, исходя из условия обеспечения необходимой кратности тока короткого замыкания.

Ток короткого замыкания, от чего зависит величина тока КЗ

В данной статье речь пойдет о коротком замыкании в электрических сетях. Мы рассмотрим типичные примеры коротких замыканий, способы расчетов токов короткого замыкания, обратим внимание на связь индуктивного сопротивления и номинальной мощности трансформаторов при расчете токов короткого замыкания, а также приведем конкретные несложные формулы для этих вычислений.

При проектировании электроустановок необходимо знать значения симметричных токов короткого замыкания для различных точек трехфазной цепи. Величины этих критических симметричных токов позволяют проводить расчеты параметров кабелей, распределительных устройств, устройств селективной защиты и т. п.

Далее рассмотрим ток трехфазного короткого замыкания при нулевом сопротивлении, который подается через типичный распределительный понижающий трансформатор. В обычных условиях данный тип повреждений (короткое замыкание болтового соединения) оказывается наиболее опасным, при этом расчет очень прост. Простые расчеты позволяют, придерживаясь определенных правил, получить достаточно точные результаты, приемлемые для проектирования электроустановок.

Ток короткого замыкания во вторичной обмотке одного понижающего распределительного трансформатора. В первом приближении сопротивление высоковольтной цепи принимается очень малым, и им можно пренебречь, поэтому:

Здесь P – номинальная мощность в вольт-амперах, U2 – напряжение между фазами вторичной обмотки на холостом ходу, Iн — номинальный ток в амперах, Iкз — ток короткого замыкания в амперах, Uкз — напряжение при коротком замыкании в процентах.

В таблице ниже приведены типичные значения напряжений короткого замыкания для трехфазных трансформаторов на напряжение высоковольтной обмотки в 20 кВ.

Если для примера рассмотреть случай, когда несколько трансформаторов питают параллельно шину, то величину тока короткого замыкания в начале линии, присоединенной к шине, можно принять равной сумме токов короткого замыкания, которые предварительно вычисляются по отдельности для каждого из трансформаторов.

Когда все трансформаторы получают питание от одной и той же сети высокого напряжения, значения токов короткого замыкания при суммировании дадут несколько большее значение, чем окажется в реальности. Сопротивлением шин и выключателей принебрегают.

Пусть трансформатор обладает номинальной мощностью 400 кВА, напряжение вторичной обмотки 420 В, тогда если принять Uкз = 4%, то:

На рисунке ниже приведено пояснение для данного примера.

Точности полученного значения будет достаточно для расчета электроустановки.

Ток короткого трехфазного замыкания в произвольной точке установки на стороне низкого напряжения:

Здесь: U2 — напряжение на холостом ходу между фазами на вторичных обмотках трансформатора. Zт — полное сопротивление цепи, расположенной выше точки повреждения. Далее рассмотрим, как найти Zт.

Каждая часть установки, будь то сеть, силовой кабель, непосредственно трансформатор, автоматический выключатель или шина, — имеют свое полное сопротивление Z, состоящее их активного R и реактивного X.

Емкостное сопротивление здесь роли не играет. Z, R и X выражаются в омах, и при расчетах представляются как стороны прямоугольного треугольника, что показано на рисунке ниже. По правилу прямоугольного треугольника вычисляется полное сопротивление.

Сеть разделяют на отдельные участки для нахождения X и R для каждого из них, чтобы вычисление было удобным. Для последовательной цепи значения сопротивлений просто складываются, и получаются в итоге Xт и Rт. Полное сопротивление Zт определяется из теоремы Пифагора для прямоугольного треугольника по формуле:

При параллельном соединении участков расчет ведется как для параллельно соединенных резисторов, если объединенные параллельные участки обладают реактивным или активным сопротивлениями, получится эквивалентное общее сопротивление:

Xт не учитывает влияние индуктивностей, и если расположенные рядом индуктивности влияют друг на друга, то реальное индуктивное сопротивление окажется выше. Необходимо отметить, что вычисление Xз связано только к отдельной независимой цепью, то есть так же без влияния взаимной индуктивности. Если же параллельные цепи расположены близко к друг другу, то сопротивление Хз окажется заметно выше.

Рассмотрим теперь сеть, присоединенную к входу понижающего трансформатора. Трехфазный ток короткого замыкания Iкз или мощность короткого замыкания Pкз определяет поставщик электроэнергии, однако можно исходя из этих данных найти полное эквивалентное сопротивление. Полное эквивалентное сопротивление, одновременно приводящее к эквиваленту для низковольтной стороны:

Pкз — мощность трехфазного короткого замыкания, U2 – напряжение на холостом ходу низковольтной цепи.

Как правило, активная составляющая сопротивления высоковольтной сети — Rа — очень мала, и сравнительно с индуктивным сопротивлением — ничтожно мало. Традиционно принимают Xa равным 99,5% от Zа, и Ra равным 10% от Xа. В таблице ниже приведены приблизительные данные относительно этих величин для трансформаторов на 500 МВА и 250 МВА.

Полное Zтр — сопротивление трансформатора на стороне низкого напряжения:

Pн — номинальная мощность трансформатора в киловольт-ампреах.

Активное сопротивление обмоток находится исходя из мощности потерь.

Когда ведут приблизительные расчеты, то пренебрегают Rтр, и принимают Zтр = Xтр.

Если требуется принять в расчет выключатель низковольтной цепи, то берется полное сопротивление выключателя, расположенного выше точки короткого замыкания. Индуктивное сопротивление принимают равным 0,00015 Ом на выключатель, а активной составляющей пренебрегают.

Что касается сборных шин, то их активное сопротивление ничтожно мало, реактивная же составляющая распределяется примерно по 0,00015 Ом на метр их длины, причем при увеличении расстояния между шинами вдвое, их реактивное сопротивление возрастает лишь на 10%. Параметры кабелей указывают их производители.

Что касается трехфазного двигателя, то в момент короткого замыкания он переходит в режим генератора, и ток короткого замыкания в обмотках оценивается как Iкз = 3,5*Iн. Для однофазных двигателей увеличением тока в момент короткого замыкания можно пренебречь.

Дуга, сопровождающая обычно короткое замыкание, обладает сопротивлением, которое отнюдь не постоянно, но среднее его значение крайне низко, однако и падение напряжения на дуге невелико, поэтому практически ток снижается примерно на 20%, что облегчает режим срабатывания автоматического выключателя, не нарушая его работу, не влияя особо на ток отключения.

Ток короткого замыкания на приемном конце линии связан с током короткого замыкания на подающем ее конце, но учитывается еще сечение и материал передающих проводов, а также их длина. Имея представление об удельном сопротивлении, каждый сможет произвести этот несложный расчет. Надеемся, что наша статья была для вас полезной.

Читать еще:  Выключатель компьютера по расписанию

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети:

Проект РЗА

Сайт о релейной защите и цифровых технологиях в энергетике

Особенности расчета однофазных токов КЗ в сети 0,4 кВ

Привет всем.

Сегодня поговорим о расчете однофазных токов коротких замыканий в низковольтных сетях. Почему именно однофазных?

Во-первых потому, что для выбора уставок эти токи обычно являются определяющими по критерию чувствительности. Во-вторых, потому, что с расчетами этих токов больше всего вопросов, и основные связаны с вычислением параметров нулевой последовательности кабелей и сопротивления дуги. Давайте их проанализируем.

Источники информации для расчета однофазных ТКЗ в сетях 0,4 кВ

Основным документом определяющим правила расчета токов КЗ в сетях до 1000 В является ГОСТ 28249-93. Стоит, однако, отметить, что этот документ в основном направлен на расчеты ТКЗ для выбора оборудования, а не уставок РЗА и автоматических выключателей.

Второй источник — это известная книга А.В. Беляева «Выбор аппаратуры, защит и кабелей в сетях 0,4 кВ», которая, хоть и не является нормативным документом, гораздо более подробно описывает правила расчета ТКЗ именно для выбора уставок автоматических выключателей.

В принципах расчета однофазных токов КЗ, приведенных в этих источниках есть существенные различия. Приведем основные в Табл. 1

Табл.1. Различия в методиках вычисления однофазных КЗ

Наверное, надежнее пользоваться методикой, приведенной в действующем ГОСТ, но есть две проблемы.

Первая в том, что найти достоверную информацию о сопротивлениях нулевой последовательности кабелей 0,4 кВ очень непросто потому, что производители не приводят ее в каталогах. В приложениях ГОСТ есть данные по r0 и x0 кабелей, но без указания конкретного типа и не для всех сечений.

Вторая причина состоит в сложности определения сопротивления дуги по ГОСТ (Приложение 9), где в приведенной формуле (40) сопротивление дуги зависит от тока КЗ, который нужно определить с учетом сопротивления дуги! Как это сделать на практике не очень понятно. Графики зависимости сопротивления дуги от сечения и длины кабеля (то же Приложение 9) также не слишком полезны потому, что для однофазных КЗ, многих типов кабелей там просто нет, а аппроксимировать нелинейные зависимости такое себе занятие.

По сравнению с ГОСТ методика, приведенная в книге А.В. Беляева намного более понятная и простая в применении.

Предлагаю оценить величины токов КЗ по этим двум методикам, чтобы выяснить какая из них больше подходит под наши задачи (выбор уставок защитных аппаратов)

Для примера будем использовать расчетную схему на Рис. 1

Рис.1 Расчетная схема сети 0,4 кВ

В схеме на Рис. 1 я постарался взять такие кабели, параметры которых есть и в ГОСТе, и книге А.В. Беляева. По крайней мере для линий 1 и 3.

Ниже привожу сканы из источников с указанием исходных данных по сопротивления НП и петли «фаза-ноль» для кабелей. Сопротивления прямой последовательности кабелей для обоих методов принял одинаковыми (это так и есть по источникам). Параметры трансформатора также одинаковы для обоих методов.

Рис.2. Исходные данные по сопротивления zпт.уд. из книги А.В. Беляева

Рис.3 исходные данные по уд. сопротивлениям НП из ГОСТ 28249-93

Не буду вас мучать формулами, а сразу приведу результат расчета. В конце я приложил форму Эксель, где можно посмотреть как исходные данные, так и сами формулы. Активное сопротивление медных кабелей, а также их zпт. уменьшено в 1,7 раза по сравнению с табличными (как для книги А.В. Беляева, так и для ГОСТ)

Рис.4. Результат расчета однофазных КЗ для сети 0,4 кВ по разным методикам

Как видно, разница в расчетах очень большая, причем для трех- и двухфазных КЗ она не превышает 8% (здесь не показана)

Очевидно, что такое различие в однофазных токах КЗ обусловлено разницей в параметрах нулевой последовательностей кабелей. Это особенно хорошо видно по токам металлического КЗ, где нет влияния дуги, рассчитанной по разным методикам.

Чувствительность автоматов проверяют по дуговым КЗ и здесь ситуация немного лучше. Видно, что для сопротивление дуги отчасти компенсирует различие в токах КЗ, особенно для удаленных КЗ, но все равно эта разница очень велика.

Какие причины могут быть для такой большой разницы?

  • Во-первых, это мое неправильное определение точки исходных данных. В книге А.В. Беляева указано (Таблица 7), что сопротивления петли даны для «кабелей или пусков проводов с алюминиевыми жилами». Здесь не указан ни конструкция кабеля, ни тип изоляции. Возможно здесь учтена определенная проводящая оболочка, вокруг жил.
  • Во-вторых, ни в первом, ни во втором источнике не указано на что именно происходит однофазное КЗ. Сопротивление контуров «фаза — ноль» и «фаза — заземляющие конструкции» может сильно различаться.
  • В-третьих, в методике А.В. Беляева есть несколько допущений, которые ведут к снижению токов КЗ, а именно арифметическое сложение полных сопротивлений трансформатора и кабелей и уменьшение в 1,7 раза сопротивления петли «фаза-ноль» для медных кабелей, в то время как уменьшаться должно только активное сопротивление.

В пользу методики по «петле» говорят два основных момента:

  1. Сопротивление петли «фаза-ноль» измеряют при наладке на объекте и если будет большое расхождение с расчетами, то всегда можно отправить проектировщику на проверку откорректированные исходные данные. С сопротивлениями НП так не получится.
  2. Токи однофазных КЗ через эту методику получаются ниже, чем через ГОСТ, а это лучше для проверки чувствительности. Если пройдете проверку на этих токах, то пройдете и на ГОСТовских

Если вы автоматизировали расчеты токов КЗ, например, в том же Экселе, то можете считать сразу двумя способами и выбирать наиболее подходящий для ваших условий

Как бы то ни было, этот пример показывает, что существует большая разница в расчетах однофазных токов КЗ в сети 0,4 кВ по разным методикам, и стоит осторожно относится к выбору как самой методики, так и исходных данных.

А что вы думаете по этому поводу? Пишите в комментариях

P.S. Мои расчеты ТКЗ по Рис.1 находятся здесь

Список литературы

  1. ГОСТ 28249-93. Короткие замыкания в электроустановках. Методы расчета в электроустановках переменного тока напряжением до 1 кВ
  2. А.В. Беляев. Выбор аппаратуры, защит и кабелей в сетях 0,4 кВ. Учебное пособие. Энергоатомиздат. 1988 г.
голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector