Oncool.ru

Строй журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Регулятор напряжения выключатель схема

Особенности выключателей с регулятором яркости света

Все большую популярность приобретают выключатели с регулятором яркости освещения. Эти устройства предназначены для регулирования напряжения потребителя в диапазоне ОТ 0 до 100 процентов от номинального значения. Сейчас они все чаще используются вместо классических выключателей для плавного изменения яркости светового потока.

  • Область применения
  • Классификация диммеров
  • Особенности конструкции
  • Принцип работы
  • Преимущества и недостатки регуляторов света

Область применения

Чаще всего данные устройства используются с целью регулирования яркости свечения галогеновых лампочек и классических ламп накаливания. Причем в первом случае есть один нюанс применения выключателя диммер — он должен подключаться к источнику света исключительно через понижающий трансформатор. Это устройство можно приобрести отдельно либо использовать готовое решение.

Также необходимо помнить, что выпускаются специальные выключатели, регулирующие яркость света светодиодных и люминесцентных ламп. Дело в том, что в их конструкции присутствует один важный элемент — электронный пускатель. Благодаря применению регуляторов освещения вместо обычных выключателей, можно плавно менять интенсивность светового потока от минимальных значений до максимальных.

Это не только удобно, но также позволяет отказаться от использования многокнопочных выключателей для управления люстрами с несколькими лампочками. Аналогичным образом обстоят дела и со сложными осветительными устройствами, оснащенными собственными регуляторами — значительно дешевле приобрести диммер и подключить к нему люстру.

Классификация диммеров

Сегодня в продаже можно найти три основных типа моноблочных регулируемых выключателей света:

  • Устройства, оснащенные механическим регулятором, изготовленным в форме диска — их конструкция является весьма простой, что положительно отражается и на стоимости. Они могут иметь нажимной либо поворотный механизм включения.
  • Диммеры с кнопочной регулировкой — имеют более сложную конструкцию, но при этом расширяется функционал, например, управление может осуществляться посредством пульта ДУ.
  • Сенсорные устройства — наиболее дорогие диммеры с максимально широкими функциональными возможностями.

В продаже можно найти не только моноблочные выключатели с регулятором яркости, но и устройства, имеющие модульную конструкцию. Управление такими светорегуляторами осуществляется с помощью клавишного выключателя либо выносной кнопки. Они практически не используются в жилых помещениях. Выбирая диммер, необходимо обратить внимание на мощность устройства. Этот показатель должен превышать суммарную мощность всех потребителей, подключенных к выключателю.

Несколько слов следует сказать о дополнительном функционале диммеров:

  • Возможность создания эффекта присутствия.
  • Несколько режимов затемнения, в том числе и мигание света.
  • Автоматическое включение и отключение.
  • Дистанционное или голосовое управление.

Особенности конструкции

Это достаточно сложное устройство, если сравнивать с классическими выключателями. Основным элементом конструкции является электрическая схема, задача которой заключается в снижении напряжения до необходимого показателя для питания диммера. Чтобы обеспечить надежную и бесперебойную работу данной схемы, производители используют несколько типов защиты, например, от перепадов напряжения в сети и перегрева.

Основной элемент схемы — двунаправленный триодный тиристор. Это электронный переключатель, управляющий коротким импульсом. Для подачи сигнала на открытие-закрытие тиристора используется конденсатор с определенной емкостью. Во время прохождения первой волны напряжения питания он накапливает заряд, после чего отдает его тиристору.

Принцип работы

Все современные регуляторы света не являются потребителями электрической энергии — в этом заключается их основное отличие от первых моделей. Более ранние аналоги работали в соответствии со схемой емкостного либо активного делителя напряжения. По сути, они представляли собой автотрансформаторы или реостаты, подключенные последовательно с основным потребителем энергии.

В каждой из рассмотренных ситуаций, производство и использование регуляторов света было весьма затратным. Например, если применялся реостат, то это увеличивало массу всего устройства, а также приводило к сильному нагреву. В результате производителям приходилось искать способы эффективного теплоотвода, а это сказывалось на стоимости диммера. Автотрансформатор, хотя и не является активным потребителем энергии, обладает большими габаритами.

В современных регуляторах мощности светового потока используется специальная электронная схема, позволяющая подать питание на осветительное устройство, «срезая» заднюю и переднюю части полуволны напряжения. Этот принцип работы диммеров получил название «регулирование фазы с отсеканием заднего и переднего фронтов». В соответствии с режимом работы, определяемого временем срабатывания (этот показатель составляет 0−9 мс), удается добиться плавной регулировки потребляемой мощности.

Преимущества и недостатки регуляторов света

Среди положительных свойств всех устройств этого типа стоит отметить:

  • Плавное изменение яркости света.
  • Напряжение на потребителе уменьшается без рассеивания мощности, что приводит к экономии электрической энергии.
  • Благодаря работе при сниженном напряжении увеличивается срок эксплуатации лампочек.
  • Диммеры в определенной степени способны защитить потребитель электроэнергии от перепадов напряжения в сети.
  • Устраняется резкое повышение показателя силы тока при включении лампочки.

Однако у светорегуляторов есть и несколько недостатков:

  • Более высокая стоимость в сравнении с классическими выключателями.
  • Кривая питающего напряжения несколько искажается, но это не сильно влияет на результат работы ламп накаливания.
  • В случае замены диммером многокнопочных выключателей могут возникнуть сложности с приобретением соответствующего устройства. Это связано со стоимостью двойных моделей светорегуляторов или необходимостью оборудования новых точек для монтажа устройств.

Если речь идет о подключении одинарного светорегулятора, то проблем возникнуть не должно. Во время монтажа такого устройства нет необходимости вносить изменения в схему электропроводки квартиры. Если человек хотя бы раз менял выключатель, то сможет легко подключить и регулятор света, ведь маркировка всех выводов не отличается.

Как подключить реле регулятор к генератору автомобиля

Как подключить реле регулятор к генератору

Встроенный или выносной регулятор – один из главных компонентов генератора, обеспечивающий стабильное функционирование всей системы электроснабжения автомобиля. В некоторых случаях полезно устанавливать внешний регулятор, если наблюдается перезаряд или другие сложности. Узнайте о том, как правильно подключать реле выносного типа.

Выносной регулятор

Нередко случается у водителей такое. Запаливаются щётки генерирующего устройства. Регулятор встроен вместе с щётками. Приходится менять всё вместе. И тут совет от знатоков: лучше поставь внешний регулятор, чем встроенный. Уж больно не хвалят модели, выпущенные в последнее время.

Хорошо, думаешь, поставлю внешний, только как его подключать? Оказывается, есть удобная схема, которая позволяет легко всю эту модернизацию осуществить.

Некоторые важные моменты:

  • нельзя путать фишки на регуляторе под номерами 67 и 15 (первая должна соединяться с генерирующим устройством, а вторая – идти на предохранители);

Вот как выглядит схема подключения

Схема подключения выносного и встроенного реле

На нижнем фото видим схему, которая показывает подключение уже встроенного реле регулятора.

Она подходит для подключения на «пятёрки», «семёрки», ВАЗ 2104, если ГУ установлено от ВАЗ «копейки». Как видим, реле регулятор выносного типа подключается посредством двух выводов. 15-й вывод идет на предохранитель.

Читать еще:  Задачи по выбору автоматических выключателей

Второй вывод 67 соединяется с генератором. Провод соединяется с фишкой от щёток.

Также реле выносного типа должно соединяться с массой – любой частью кузова.

Реле – это не что иное, как выключатель, служащий для смыкания и отключения отдельных зон электрической цепи, происходящих при конкретных показателях электровеличин. Реле машины иначе называют коммутатором нагрузочного напряжения, и это верно на все 100 процентов. Когда ГУ, вентилятор или стартер потребляет тока больше, чем нужно, реле срабатывает.

Каким бывает регулятор напряжения

Реле состоит из магнита электрического типа, якоря и переключателя. Электромагнитом выступает в данном случае трос, обвитый вокруг индуктора с магнитным стержнем, а якорем – особая пластина, управляющая контактами.

Как только электрическое напряжение проходит сквозь обмотку магнита, возникает электрическое поле. Специальный толкатель прижимает якорь к сердечнику и, тем самым, переключаются контакты.

Внимание. Известно два типа реле, применяемых на автомобилях ВАЗ. Это неконтактное реле-регулятор и МЭР (электрический). Именно схема последнего реле показана на картинке ниже.

Неконтактное реле или НЭРР представляет собой достаточно новый агрегат, не требующий никаких дополнительных корректировок или регулирования. Что касается МЭР, то это прибор старого образца, изготовление которого в настоящее время приостановлено.

Итак, ВРН или регулятор встроенный представляет собой устройство, состоящее из микросхемы, транзистора и корпуса с щётками. Если выходит из строя встроенный регулятор, то его заменяют на новый, либо устанавливают выносной.

Внешний регулятор легко инсталлировать, если следовать строго инструкции.

Модернизация подразумевает демонтаж и разбор генерирующего устройства.

ГУ или генератор

Генератор в любой автомобильной электросхеме выполняет главенствующие функции. Именно от него зависит нормальное функционирование и эксплуатация машины. Надежное ГУ устанавливается во все иномарки и модели отечественного автопрома.

Генератор автомобиля ВАЗ

К примеру, на «шестёрку» ставится ГУ, заряд которого удовлетворяет потребность в электричестве любого штатного компонента. Если не перегружать генерирующее устройство «шестёрки», то автомобиль способен отъездить ещё много и много километров. Однако важно своевременно проводить профилактические процедуры – следить за натяжением ремня и состоянием щёток.

ГУ подключается по классической схеме. На примере генератора ВАЗ 2106 рассмотрим его функционирование. Маркируется это ГУ, как Г-221. Представляет собою синхронную электромашину переменного напряжения с ЭЛМГ возбуждением. Внутрь ГУ встроен ВБ (выпрямитель) с 6-ю диодами.

Схема подключения генератора на ВАЗ

1обмотка ротора генератора
2генератор
3обмотка статора генератора
4выпрямитель генератора
5аккумуляторная батарея
6тумблер зажигания
7контрольная лампа заряда аккумуляторной батареи
8реле контрольной лампы заряда аккумуляторной батареи
9блок предохранителей ВАЗ -2106
10дроссель
11термокомпенсирующий резистор
12добавочные резисторы
13регулятор напряжения

Простая и понятная схема, не требующая каких-либо тонкостей и специфических знаний. На «шестёрке» ГУ размещается на моторе справа. Крепится к натяжной планке гайкой и к кронштейну своими лапками.

Как видим, на схеме показан выносной регулятор. Он помечен цифрой 13. Генератор указан под цифрой 2, блок предохранителей – под цифрой 9.

Отдельно хотелось бы рассмотреть реле, которое в схеме генератора «шестёрки» играет важную роль. В первую очередь оно служит для того, чтобы подавать информацию водителю о состоянии зарядки. Её, как известно, создаёт генерирующее устройство.

Реле выполнено по тому же принципу, как и все устройства, функционирующие, согласно тем же свойствам. Подключение осуществляется к клемме 30 генератора. Отдельный провод идёт через предохранители к ЗЗ (замку).

Действие реле сводится к следующему: лишь только вольтаж БС снижается (опускается ниже 12-вольтового значения), релейные контакты размыкаются, индикатор задействуется, давая знак водителю.

Для лучшего понимания схемы подключения рекомендуется ознакомиться также с принципами зарядки батареи:

  • как только проворачивается ключ в ЗЗ, на регулятор реле через предохранитель подаётся (вывод 15) электроимпульс;
  • в регуляторе напряжение трансформируется и идёт дальше на положительную щётку ГУ;
  • затем через щётку напряжение идёт на обмотку возбуждения ГУ;
  • затем – на отрицательную щётку, через которую и выводится на массу.

После того, как задействуется реле или после достижения в БС нормального значения вольтажа, ГУ начинает вырабатывать ток с нужным значением. Индикаторная лампа тухнет, а схема начинает работу в заводском режиме. А вот когда общий вольтаж падает, тока оказывается недостаточно, и контакты размыкаются, что приводит к горению лампы разрядки.

Реле заряда или реле контрольной лампы

Постоянное включение индикаторной лампы заряда свидетельствует о неправильной работе гена. Происходит же это по разным причинам. Для начала следует проверить предохранители: если они в активном состоянии, то внимания заслуживают уже оба реле: регулятор и зарядник. Если и они в порядке, то уже неисправности надо искать в самом генерирующем устройстве.

Прежде чем приступить к замене реле, рекомендуется тщательно проверять функционирование регулятора. Автомобиль запускается, обороты придерживаются в пределах 2500-3000 об/мин. После этого нужно отключить все потребители тока, кроме зажигания. Затем надо измерить напряжение на выводах АКБ.

Зарядка может пропадать в следующих случаях:

  1. Если изношены генераторные щётки.
  2. При неисправностях генерирующего устройства.
  3. Если неисправно реле зарядки.
  4. При выходе из строя выпрямительного блока (диодный мост).

Таким образом, инсталляция выносного реле-регулятора взамен встроенного принесёт много пользы. Дело в том, что современные зарядные системы обладают куда большей мощностью. Тем самым, современные ЗУ и намного сложнее, чем системы старого образца.

Устройство и принцип действия регуляторов напряжения

Рис. 5.Схема регулятора напряжения в интегральном исполнении

Выходная цепь регулятора состоит из транзисторов Т1 и Т2, переключающихся с помощью управляющего транзистора Т3. Роль чувствительного элемента в схеме выполняет стабилитрон Д1, подключенный к входному высокоомному делителю напряжения R1 и RТ. Схема содержит цепочку обратной связи R4, С1. Терморезистор Rт, включенный в цепь входного делителя, позволяет поддерживать практически постоянным регулируемое напряжение при изменении окружающей среды, создавая тем самым благоприятный режим заряда АБ. Конденсатор С2 служит для фильтрации входного напряжения, поступающего на транзистор Т3. Резистор Rос введен для улучшения релейности действия схемы. Масса регулятора 25 г. Имеется и другие разработки: японской фирмы «Хитачи», немецкой фирмы «Бош».

Интегральный регулятор напряжения отечественного производства R112А предназначен для работы со всеми генераторами Uн = 14 В и встраивается в щеткодержатель генератора (рис. 5). Регулятор состоит из металлического основания, на которое наклеено интегральное регулирующее устройство и жесткие выводы. Когда напряжение генератора ниже заданной величины, стабилитрон Д1 не пропускает ток, так как напряжение на нем меньше напряжения стабилизатора. При этом транзистор Т1 закрыт, так как потенциалы базы и эмиттера равны. По цепи, которую составляют резистор R5, диод Д2 и резистор R6, от источников идет ток; при этом база составного транзистора Т2 – Т3 оказывается под положительным потенциалом и в цепи база – эмиттер транзистора Т2, а затем база – эмиттер транзистора Т3 будет походить ток управления и составной транзистор открывается, соединяя цепь обмотки возбуждения генератора с минусом источника тока.

Читать еще:  Выключатели ап50б срок службы

Рис. 6. Схема интегрального регулятора наряжения

Цепь тока обмотки возбуждения: плюсовый вывод источников тока – выключатель 33 – зажим В регулятора – ОВГ – зажим «Ш» регулятора – переход коллектор – эмиттер Т1 и Т2 – минусовый вывод источников. Когда напряжение генератора достигает заданного значения 13± 15,5 В, происходит резкое снижение сопротивления стабилитрона Д1, и через резистор R1, Д1 и переход база – эмиттер Т1 начинает проходить ток управления: Т1 открывается. Так как Т1 включен параллельно цепочке, состоящей из Д2 и R6, то при очень малом сопротивлении перехода коллектор – эмиттер открытого Т1 сила тока в цепи Д2 и R6 резко падает, а потому отрицательные потенциалы базы и эмиттера Т2 – Т3 оказываются равными, и составной транзистор Т2 – Т3 закрывается. При этом цепь обмотки возбуждения прерывается, что приводит к снижению напряжения генератора.

Напряжение на стабилитроне также уменьшается и становится меньше напряжения стабилизации. Сопротивление стабилитрона возрастает и ток через него проходить не будет и Т1 закрывается, а Т2 – Т3 открывается. Цепочка обратной связи С1 и R4 ускоряет открывание и закрывание. Когда Т2 – Т3 закрывается, положительный потенциал его коллектора повышается и по цепочке R4 — С1 и переходу база – эмиттер Т1, а также через R3 действует импульс тока, способствующий более быстрому открыванию Т1, что ускоряет закрывание Т2 – Т3.

Конденсатор С1 при этом за-ряжяется. Когда Т2 – Т3 открывается, С1 разряжается по цепи: С1 – R4 – коллектор – эмиттер Т2 – Т3 – корпус – резистор R3, а также эмиттер – база Т1 – С1, что способствует более быстрому закрыванию Т1, а следовательно, открыванию Т2 – Т3. При запирании составного транзистора прерывается ток в цепи обмотки возбуждения и в обмотке индуктируется ЭДС самоиндукции. Под действием этой ЭДС создается ток самоиндукции, который проходит через гасящий диод Д3, тем самым предотвращается пробой Т2 – Т3.

Конденсатор С2 выполняет роль фильтра. Интегральный регулятор Я120 работает с генератором Г373 с номинальным напряжением 28 В, отличается величинами сопротивлений резисторов делителя напряжения, установкой двух последовательно включенных стабилитронов и схемой включения в цепь питания обмотки возбуждения.

Регулятор напряжения: Коммутирующая и установочная аппаратура

Коммутирующая и установочная аппаратура автомобиля: выключатели и переключатели; электромагнитные реле и контакторы; разъемные и соединительные панели. Основным узлом коммутационных устройств является контактная часть, имеющая в конструкции изделий первой группы механической (ручной, пневматический и др.) привод и в конструкции второй группы – электромагнитный привод. По схеме коммутации выключатели и переключатели отличаются количеством коммутационных цепей, количеством позиций, числом выводов, исполнением привода – клавишные, кнопочные, повторные, вытяжные. Основными параметрами выключателей и переключателей являются номинальное напряжение, номинальный ток, схема коммутации, величина падения напряжения на контактах, ресурс по количеству циклов включения, отключения.

По функциональному назначению можно выделить: главный выключатель; центральный переключатель света; многофункциональный подрулевой переключатель; переключатель системы стеклоочистки; переключатель отопления; переключатель указателей поворота; выключатель стоп-сигнала; выключатель аварийной световой сигнализации; выключатель различных управляющих и исполнительных устройств. В схемах электрооборудования автомобилей все больше распространение получают реле.

Реле включения стартера; реле сигналов дальнего и ближнего света фар; электровентилятора в системе охлаждения двигателя; обогрева заднего стекла; отопителя; фароочислителей; отключения обмотки возбуждения генератора. Реле-прерыватели применяются в схемах контрольной лампы ручного тормоза стеклоочистителя. Электромагнитные реле делят на три группы по конструктивному исполнению; обычные; малогабаритные; специальные.

По схеме коммутации реле подразделяются на замыкающие, размыкающие и переключающие. Реле отличаются по режиму работы: продолжительному и кратковременному. В сильноточных цепях с токами свыше 50 А применяют контакторы на 12 и 24 В. Разъемы и соединительные панели служат для обеспечения монтажа жгутов и приборов электрооборудования, соединения тягача и прицепом, подключения внешнего питания, подключения переносной лампы и т. д.

Регулятор наряжения: основные неисправности и их устранение

Электрические неисправности, которые можно определить по показаниям контрольных приборов.

1. Амперметр показывает разрядный ток при средней частоте вращения вала. Контрольная лампа заряда батареи (ВАЗ) горит полным огнем. Это указывает на неисправность приборов системы генератора, реле — регулятора или цепи зарядного тока, цепи возбуждения. Исправность цепей проверяется наличием и величиной напряжения от аккумуляторной батареи при неработающем двигателе. Для проверки цепи возбуждения генератора необходимо отсоединить провод от зажима «Ш» генератора и вместо разрыва цепи присоединить вольтметр и включить зажигание. Отсутствие напряжения свидетельствует об обрыве в цепи ОВГ. При исправном генераторе, если амперметр показывает зарядный ток, то это указывает на неисправность регулятора напряжения. Отсутствие зарядного тока может быть при слабом натяжении ремня привода ротора генератора.

2. Амперметр постоянно регистрирует большую силу зарядного тока. Причиной нарушения может быть неисправность регулятора напряжения, пробой силового транзистора, короткое замыкание проводов между «+» и «Ш» генератора, увеличение сопротивления выключателя зажигания. При обнаружении неисправности до выяснения причины необходимо отключить провод от зажима «Ш» генератора. Состояние цепи возбуждения на увеличение сопротивления можно обнаружить по показанию вольтметра (10 В) между «+» и «Ш».

3. Амперметр показывает малую силу зарядного тока при разряженной аккумуляторной батарее и средней частоте вращения вала. Это может быть при неисправности генератора или нарушении регулировки реле регулятора. Замыкают зажимы «+» и «Ш» при отключенном регуляторе напряжения и наблюдают показания амперметра. Если амперметр покажет зарядный ток, то это указывает на неправильную работу реле регулятора, а отсутствие зарядного тока – на неисправность генератора.

4. Стрелка амперметра колеблется, контрольная лампа заряда батареи мигает при средней частоте вращения вала. Подобное возможно при периодических нарушениях в цепи зарядного тока и возбуждении генератора, а так же при пробуксовке приводного ремня. Причиной периодических нарушений может быть плохой контакт между щетками и кольцами.

5.Основные неисправности генераторов:

  • плохой контакт между щетками и контактными кольцами ротора возникает при загрязнении и замасливании контактных колец;
  • обрыв обмотки возбуждения чаще всего происходит в местах пайки концов обмотки с контактным кольцом;
  • замыкание обмотки возбуждения на корпус ротора происходит при разрушении изоляции обмотки;
  • межвитковое замыкание в катушке обмотки возбуждения;
  • замыкание обмотки статора на корпус при механическом или тепловом повреждении изоляции;
  • — межвитковое замыкание или обрыв в цепях фазных обмоток статора; — плохой контакт между щетками и контактными кольцами ротора в ре зультате загрязнения и замасливания контактных колец; — обрыв обмотки возбуждения чаще всего происходит в местах пайки кон цов обмотки с контактным кольцом;
  • — замыкание обмотки возбуждения на корпус ротора при этом происходит при разрушении изоляции обмотки. При этом генератор не развивает мощности
Читать еще:  Трехкнопочный выключатель без фиксации

6. Основные неисправности выпрямителя: Пробой диодов выпрямительного блока из-за перегрева внешними токами или повышения напряжения генератора, механическом повреждении. В пробитом диоде сопротивление равно нулю и он проводит ток в обоих направлениях, что вызовет короткое замыкание фаз обмотки статора. Напряжение генератора снижается и аккумуляторная батарея не будет заряжаться;

7. Проверка неисправности интегральных регуляторов напряжения. Подключают регулятор на пониженное напряжения (зажим «В» и «масса») и контрольную лампу к зажимам «В» и «Ш», если лампа горит полным накалом — При обнаружении неисправности до выяснения причины необходимо отключить провод от зажима «Ш» генератора. Состояние цепи возбуждения на увеличение сопротивления можно обнаружить по показанию вольтметра (10 В) между «+» и «Ш».

Учебное издание Петров Валерий Максимович Дьяков Иван Федорович

Электрооборудование, электронные системы и бортовая диагностика автомобилей Редактор Н.А. Евдокимова

Как сделать своими руками регулятор мощности: схемы, принцип работы, основные элементы и особенности сборки (85 фото и видео)

Электроника – интересная, увлекательная и полезная наука. Всё, что нас окружает, чем пользуемся в быту, офисе, производстве, основано на управлении электронными приборами.

Люди разных возрастов (от 7 до 70 лет), увлеченные электроникой, приносят пользу человечеству, изобретая, конструируя, создавая приборы управления, гаджеты, вычислительную технику, телевизоры, музыкальные центры, аппаратуру связи и управления космической техникой и многое другое.

Бил Гейтс и Марк Цукерберг, Борис Евсеевич Черток и Николай Алексеевич Пилюгин, Александр Степанович Попов и Владимир Кузьмич Зворыкин – великие электронщики, создавшие мощную инфраструктуру, без которой современная жизнь немыслима.

Краткое содержимое статьи:

Идеи автоматизации двигают прогресс

Одним из разделов электроники является автоматизация и управление электронными и электрическими приборами.

Широкое применение имеют коммутационные приборы – тиристоры, разделяющиеся на типы:

  • кремниевый управляемый выпрямитель;
  • тетроидный тиристор;
  • симметричный (двунаправленный) триодный тиристор или симистор;
  • диодный тиристор – динистор;
  • симметричный динистор.

В различных бытовых приборах и электрических инструментах для регулировки мощности используется симисторный регулятор мощности.

Принцип работы симисторного регулятора мощности

Принцип работы симисторного регулятора мощности состоит в уникальных свойствах симистора, работающего как управляемое реле.

Симистор представляет собой два кремниевых управляемых выпрямителя (КУВ), включенных встречно, что позволяет протекать току в обоих направлениях и использовать симистор для коммутации и передаче переменного тока.

Симистор имеет три вывода, два из которых основные (силовые), обозначаются Т1; Т2 или ОВ1; ОВ2, третий – управляющий, обозначается УЭ или G.

Когда управляющий вывод обесточен, на основных выводах напряжение отсутствует, так как КУВы запирают электрическую цепь.

При подаче напряжения на управляющий вывод оба КУВа открываются, и через симистор протекает переменный ток.

Применяется симистор в различных устройствах:

  • переключатель для включения электрической нагрузки;
  • регуляторы:
  • яркости света;
  • скорости вращения электродвигателя;
  • мощности.

Схема регулятора мощности своими руками

Регулятор мощности просто сделать на тиристоре или симисторе своими руками. Тиристор пропускает ток в одном направлении и работает как пускатель.

Достоинства перед последним в том, что нет искрения в контактной группе, потому что тиристор прибор полупроводниковый бесконтактный.

Симистор, как уже говорилось, пропускает переменный ток и в зависимости от величины напряжения на управляющем входе регулирует напряжение на выходе схемы, в которую включен.

Схемы регулятора мощности можно найти в Интернете и выбрать по своим требованиям.

Инструкция, как сделать регулятор мощности

Для изготовления регулятора мощности понадобятся:

  • радиодетали в соответствии с применяемой схемой;
  • печатная плата;
  • корпус для будущего устройства;
  • паяльник;
  • пинцет;
  • бокорезы;
  • держатель для монтажной платы;
  • игла;
  • кисточка;
  • хлористое железо для травления печатной платы;
  • припой;
  • канифоль или флюс.

Корпус, в зависимости от фантазии конструктора можно склеить из пластика по размерам изделия, можно подобрать готовые корпуса от розеток, тройников или встроить устройство в инструмент, для которого делается регулятор.

Порядок выполнения работ

В первую очередь готовится печатная плата из куска фольгированного текстолита. На приобретенном куске текстолита размечаем расположение элементов схемы, отмечаем необходимые размеры платы и вырезаем её.

Обезжириваем фольгу, чистим мелкой шкуркой, рисуем карандашом монтажную схему регулятора, соответствующую принципиальной.

Лаком (можно лаком для ногтей) обводим карандашный рисунок. После высыхания лака опускаем плату в ванночку с хлористым железом и вытравливаем медную фольгу не участвующую в работе схемы.

В местах установки элементов схемы сверлим отверстия, наносим на остатки фольги пленку флюса и лудим дорожки и площадки, создавая токоведущие соединения. По готовности платы к установке элементов заканчиваем монтаж их установкой и впаиванием.

Устанавливаем симистор или тиристор на радиаторе для отвода тепла.

Припаиваем по схеме провода питания

Перед первым включением необходимо прозвонить всю схему и убедиться в том, что она собрана правильно. Убедившись в правильной сборке, подключаем на выход нагрузку. Наглядной нагрузкой для определения правильности работы регулятора может служить лампочка.

Изменяя положение ползунка потенциометра, убеждаемся в изменении интенсивности свечения лампы.

Схема работает и её можно использовать для регулировки мощности любой нагрузки.

Симисторный регулятор мощности

Простейший симисторный регулятор мощности состоит из симистора, переменного резистора и емкости (конденсатора).

Работает схема следующим образом. При включении устройства в сеть начинает заряжаться конденсатор.

Когда напряжение на нем достигнет напряжения открывания симистора, на выход схемы поступает импульс положительной или отрицательной полярности в соответствии с поступившей на вход полуволной. При переходе синусоиды входного тока через ноль симистор закрывается.

Переменный резистор и емкость образуют RC-цепочку, формирующую величину отсечки, т.е. время между двумя импульсами тока на выходе схемы. Чем больше их величины, тем больше величина отсечки и меньше ток, протекающий через нагрузку.

Применение регуляторов мощности на симисторе вместо переменного резистора, подключенного последовательно с нагрузкой, снижает потребление электроэнергии и повышает долгосрочность работы устройства.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector