Oncool.ru

Строй журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Выключатель с драйвером тока

Монтаж и ремонт выключателя с подсветкой

Выключатели играют в помещениях важную роль — они фактически обеспечивают появление искусственного света. При этом существуют приборы, у которых в выключенном состоянии подсветка в темноте. Это очень удобно, когда входишь в тёмное помещение без окон и сразу же видишь место, где можно включить свет. Но как обращаться с такими выключателями и как их ремонтировать? Об этом мы поговорим в этой статье.

Устройство выключателя с подсветкой

Для начала разберёмся, что из себя представляет начинка такого прибора. На самом деле, она мало чем отличается от внутренностей обычного выключателя без подсветки. Просто помимо размыкающих контактов, которыми управляют клавиши, здесь есть ещё дополнительная электрическая линия.

Это дополнительная схема подсветки, которая состоит из токоограничивающего резистора и неоновой лампочки или светодиода. Когда выключатель находится в положении размыкания контакта подачи питания на комнатный светильник, ток проходит через линию подсветки, используя спираль лампы освещения как замыкающий элемент цепи.

Если контакт выключателя разомкнут, ток проходит через цепь подсветки и включает светодиод

При этом резистор, находящийся в цепи подсветки, ограничивает проходящий по ней ток, поэтому напряжения не хватает, чтобы зажечь комнатный светильник. А светодиод загорается — ему тока нужно значительно меньше. Когда же выключатель активируется, напряжение начинает действовать исключительно на основную лампу, а подсветка гаснет.

При замыкании контакта выключателя ток начинает проходить по цепи питания лампы (по пути наименьшего сопротивления) и включает её, подсветка при этом гаснет

Исходя из описанного принципа прохождения тока, становится понятно, что правильно такой прибор будет работать только при подключении к фазовому проводу (который всегда под напряжением). Но подробнее о премудростях электромонтажа выключателя с дополнительной цепью поговорим далее.

Как подключить прибор с подсветкой: пошаговая инструкция

Итак, главная аксиома, характерная, вообще-то, для монтажа любого выключателя, состоит в следующем: к прибору размыкания света подводят только фазовый провод. Это указано в Правилах Устройства Электроустановок (ПУЭ). В противном случае, если питающую линию подвести к люстре, а нулевой провод — к выключателю, человека, меняющего лампы в приборе освещения, может ударить током.

Процесс подключения описываемого узла с подсветкой также мало отличается от алгоритма монтажа обычного выключателя. Приведём его в виде инструкции.

Здесь предполагается, что в гнездо для прибора уже установлен универсальный стакан и подведены провода.

Схема прокладки проводов и подключения их к клеммам выключателя не зависит от наличия в нём подсветки

А вот как выглядит сама инструкция.

  1. Сначала отключают питающий автомат в щитке квартиры — это строго обязательно.
  2. Затем снимают клавиши с устанавливаемого прибора. Для этого их аккуратно поддевают сбоку отвёрткой с тонким жалом.

Каждая клавиша (если их на приборе несколько) аккуратно поддевается отвёрткой, заведённой в щель, и отделяется от корпуса

После снятия облицовочной панели появляется доступ к основному механизму выключателя

К выключателю должны подходить два провода — от распределительной коробки и от светильника, их нужно подсоединить к контактам на корпусе

Металлический корпус аккуратно вставляется в подрозетник и крепится к нему двумя винтами

Когда питающих автоматов в квартире много, а нужный неизвестен, поступают следующим образом. Договариваются с помощником, он отключает «рубильники» поочерёдно. Хозяин же подставляет отвёртку-тестер жалом к оголённому питающему проводу в стакане. При этом он приставляет палец к торцу ручки пробника. Светодиод в отвёртке погаснет, когда помощник отключит нужный автомат.

Если же после окончания работ оказалось, что подсветка прибора не горит, необходимо демонтировать выключатель, действуя в обратном порядке, и проверить его исправность с помощью мультиметра. Но о диагностике и ремонте прибора с подсветкой поговорим в специальном разделе статьи.

Что касается выключателей с несколькими клавишами и подсвечивающей лампочкой, всё вышесказанное характерно и для них. Независимо от числа клавиш цепь подсветки всегда имеет уже описанное устройство.

Встречаются ещё приборы с дистанционным управлением. У них есть так называемый приёмный пункт, который монтируется в комнате. Главная управляющая схема может располагаться в щитке. Приёмное устройство напоминает по виду обычный выключатель. Он также может иметь подсветку. Его монтаж осуществляется профессиональным электриком в соответствии с инструкцией, прилагаемой к изделию.

Видео по теме: как поменять выключатель с подсветкой

Можно ли отключить подсветку и как это сделать

Предположим, что работа светодиода нам вообще не нужна. Например, у нас помещение, в котором всегда есть какое-то дополнительное освещение. В таком случае легко превратить прибор с подсветкой в обычный.

Для этого полностью разбираем снятый выключатель по ранее описанному сценарию (то есть снимаем клавиши и убираем облицовку). Затем просто удаляем маленькую лампочку подсветки.

  1. Если её питающие усики вставлены в соответствующие отверстия, то данный узел достаточно лишь вытащить пальцами на себя.
  2. Если усики впаяны в устройство, необходимо вооружиться маленьким паяльником и включить его в сеть. Через две-три минуты инструмент нагреется. Теперь нужно аккуратно, держа паяльник исключительно за ручку, коснуться жалом мест пайки. Через некоторое время можно потянуть лампочку на себя.

Для того чтобы отсоединить лампочку, достаточно поочерёдно коснуться разогретым жалом паяльника мест пайки и потянуть её на себя

Если подсветка сломалась или работает неправильно

Если после монтажа или в процессе эксплуатации лампочка внутри выключателя перестаёт гореть, необходимо произвести диагностику и ремонт.

  1. Демонтируем выключатель, сняв клавиши, облицовку и открутив винтики усов.
  2. Вытаскиваем концы проводов из контактов, ослабив болтики. Механизм оказывается перед нами.

После отсоединения выключателя от проводов можно получить доступ к сопротивлению и светодиоду, которые составляют цепь подсветки

Мультиметр используется для измерения силы тока, напряжения и сопротивления элементов цепи

Светодиод для подсветки можно купить в любом магазине радиодеталей

Может возникнуть вопрос: а как проверять резистор? Но этого делать не нужно. Во-первых, потому что этот процесс гораздо сложнее, во-вторых, указанная деталь ломается очень редко.

После замены светодиода необходимо смонтировать описываемый прибор обратно на штатное место.

Видео: ремонт двухклавишного выключателя с подсветкой

Приборы с подсветкой достаточно надёжны в эксплуатации. Они ни в чём не уступают обычным выключателям, у которых нет дополнительных функций. Установка приборов с подсветкой не вызывает сложностей. Единственный минус — стоимость такого выключателя чуть выше, чем у обычного. Но в итоге решающую роль играет место установки, так что выбор за потребителем.

Драйвер светодиодной лампы: что это такое и какие есть виды?

Важной частью любой светодиодной лампы является драйвер. От его структуры и качества зависит продолжительность работы лампы и её устойчивость к перепадам напряжения.

Драйвер – это плата с электронными компонентами, обеспечивающая питание светодиодов, преобразуя переменный ток в постоянный. В зависимости от компонентов определяется тип драйвера. Обязательными составляющими любого драйвера являются:

  • диодный мост, который преобразовывает переменное напряжение в постоянное;
  • входной конденсатор, который сглаживает колебания тока;
  • входной резистор, который ограничивает ток в момент включения лампы и не даёт выключателю искрить;
  • выходной конденсатор, который устраняет колебания тока и помех, появившихся в процессе преобразования тока;
  • выходной резистор, обеспечивающий разряд выходного конденсатора при выключении лампы и регулировки нагрузки в случае выхода из строя части светодиодов.

В зависимости от того, какие ещё компоненты присутствуют на плате драйвера, их разделяют на три типа: Linear, Linear IC и IC.

Типы драйверов светодиодных ламп

Linear

Linear, или просто линейный драйвер, является самым простым и дешевым драйвером. На его плате присутствуют только самые необходимые элементы. Основная его функция – преобразование переменного тока в постоянный, он не защищает светодиоды от перепадов напряжения в сети. Чаще всего этот тип драйвера используется в лампах, в которых недостаточно места для размещения более сложных типов драйверов и в маломощных лампах. Например, Linear драйвер часто используют в филаментных лампах.

Linear драйвер – это плата с электронными компонентами, которая преобразовывает переменный ток в постоянный.

Constant Linear драйвер.

Linear IC

Linear IC драйвер (Integrated Circuit — интегральная микросхема) отличается наличием простой IC микросхемы. Такой драйвер защищает лампу от перепадов напряжения в узком диапазоне, но не от перепадов силы тока и всё ещё является бюджетным решением для LED лампы. Linear IC драйвера используются во всех типах светодиодных ламп и светильников.

Linear IC драйвер – это плата с электронными компонентами, преобразовывающая переменный ток в постоянный и содержащая микросхему стабилизирующую напряжение.

DoB Linear IC драйвер.

IC

Самый сложный – это IC драйвер . В нём больше всего компонентов что делает его более массивным, но и более надёжным в работе. Наличие IC микросхемы позволяет драйверу контролировать не только поступающее на светодиоды напряжение, но и силу тока. Высокочастотный EMC-фильтр устраняет помехи, создающиеся при преобразовании тока, а трансформатор (или катушка) снижает входящее напряжение до уровня, необходимого для стабильной работы светодиодов. Такой драйвер обеспечивает продолжительную работу светодиодной лампы и используется во всех видах лампочек и светильников.

IC драйвер – это плата с электронными компонентами, которая преобразует переменный ток в постоянный и содержит микросхему, стабилизирующую входящее напряжение и силу тока.

Constant IC драйвер с компонентами, размещёнными на одной стороне платы.

Электронные компоненты IC драйвера могут быть расположены как на одной стороне платы, так и на обеих. Размещение на обеих сторонах обеспечивает лучшее охлаждение компонентов и увеличивает срок их службы.

Constant IC драйвер с компонентами, размещёнными на разных сторонах платы.

Способ монтажа драйвера

Сам драйвер может быть соединен со светодиодной платой двумя способами: DoB и Constant.

DoB

DoB (Driver on Board) означает “драйвер на плате”. При таком способе монтажа большая часть или все элементы драйвера наносятся на плату со светодиодами, а не на отдельную. DoB драйвера более бюджетные и позволяют сэкономить место в корпусе лампы, однако размещение драйвера на плате со светодиодами приводит к перегреванию элементов. Поэтому лампы с драйверами DoB по сравнению с лампами с драйвером Constant имеют меньший срок эксплуатации.

Способ DoB встречается практически во всех LED лампочках и светильниках из-за его дешёвого производства. Однако для многих LED светильников с компактным корпусом (таких как прожекторы) способ DoB является единственным возможным решением.

Драйвер DoB – это драйвер, электронные компоненты которого установлены на плату со светодиодами.

DoB Linear IC драйвер.

Constant

Constant, или встречается название Isolated (изолированный), драйвер – это также драйвер, электронные компоненты которого нанесены на отдельную плату, а не на плату со светодиодами. Такой способ установки более дорогостоящий и требует дополнительного места, но обеспечивает лучшее охлаждение светильника и продлевает срок его службы.

Способ Constant встречается в филаментных лампах, водонепроницаемых ЖКХ светильниках, мебельных светильниках.

Драйвер Constant – это драйвер, который расположен отдельно от платы со светодиодами.

Constant IC драйвер.

Важно запомнить, что IC, Linear IC и Linear — это типы драйвера, а DoB и Constant — это способы его размещения.

Самым надёжным, но и дорогим вариантом является Constant IC драйвер. С ним лампа будет работать не один год и проявлять устойчивость не только к перепадам напряжения в сети в широком диапазоне, но и к перепадам силы тока.

Диммирование 0- 10 V или 1-10V схема подключения , принцип работы

  • Аварийный светодиодный модуль
  • Аварийный светодиодный светильник LED
  • Аварийный светодиодный светильник LED DALI
  • Готовые световые модули в оболочке
  • Световой модуль 2750-6500 К
  • Световой модуль низкопрофильный
  • Световой модуль сборный 2-х компонентный Downlight
  • Светодиодные круговые модули
  • Светодиодные ленты 24V
  • Светодиодные матрицы COB
  • Светодиодные модули
  • Светодиодные модули квадратные
  • Светодиодные модули токовые с изменением mA
  • Светодиодные модули уличные
  • Снято с производства
  • Датчики для складов и высоких помещений
  • Датчики DALI 16 bit PIR — Датчик освещения и движения инфракрасный
  • Датчики DALI 2 24 bit PIR — Датчик освещения и движения инфракрасный DALI2
  • Датчики датчик освещения беспроводной casambi ready Bluetooth (Bluetooth Low Energy, Bluetooth LE, BLE)
  • Датчики движения (PIR) и освещения DALI1
  • Датчики микроволновой 5.8 Hz
  • Датчики присутствия
  • Актуаторы Реле DALI-2
  • LiFePO4 аккумуляторные батареи для БАП
  • NiCd аккумуляторные батареи для БАП
  • NiMH аккумуляторные батареи для БАП
  • Трансформатор для низковольтных систем освещения / Блок защиты галогенных ламп
  • Электрические аксессуары для светильников
  • Комплектующие для ПРА (балласта)
  • Светотехнические аксессуары для светильников
  • Модули защиты от скачков напряжения светодиодного драйвера
  • Сетевой роутер (маршрутизатор)
  • Кабель коаксиальный net4more
  • Разное

Для диммирования светодиодных лент и светильников очень часто используют системы управления работающие по стандарту 0-10 и 1-10 вольт
В 2001 был разработан единый стандарт ANSI E1.3 с диапазоном изменения управляющего напряжения 0–10V.
Система управления освещением значительно повышает уровень комфорта и увеличивает энергоэффективность. Регулировка яркости широко используется в современных системах. Так посредством диммирования можно создать приглушенный мягкий свет в гостиной или спальне или быстро сменить атмосферу в кафе, а также сделать визуальные акценты в магазинах.
По мере развития технологий были разработаны и стандартизированы аналоговые, а затем и цифровые системы управления.Оба вида активно используются на сегодняшний день. Выбор системы зависит от целей клиента, и его потребностей.
Управление светом 0-10 V меняет яркость свечения пропорционально управляющему воздействию от 0 до 10V
Так, напряжение равное 0 будет обозначать, что света нет
5V – свечение ровно наполовину
10V –поток света работает на все 100%
Основным рабочим устройством обычно является диммер регулятор. Данный протокол широко используется в частных домах и квартирах.


по стандарту 0-10 V
1. активный регулятор и пассивный диммер, отвечающий на сигналы регулятора.Регулятор света имеет характеристику Управления, начинающуюся с выключенного состояния светильника (0), и до максимальной яркости (100%);
2. при подключении, питающее напряжение подается к Регулятору;
3. диммеры 0-10В могут работать только с активным регулятором 0-10В
если планируется использовать светильники с диммером (ЭПРА с диммированием) подключаемые по интерфейсу 0-10 v , необходимо предусмотреть установку дополнительного реле для каждой группы светильников.
Драйверы светодиодов с аналоговым принципом управления освещенностью на 0–10 В применяются повсеместно. Тем не менее, данный метод управления не обеспечивает достаточной стабильности и не позволяет получать данные с сетевого контроллера, поэтому проводить диагностику затруднительно.
К основному преимуществу можно отнести сравнительно невысокую стоимость балласта, который позволяет сделать дешевый светильник.
Недостатки профиля 0-10 v — нет возможности управления большим количеством светильников, если светильник выйдет из строя в интерфейсе это не будет отображено. Управление освещением производится по отдельным проводам с управляющим напряжением, идущим к каждому устройству.
Управление освещенности на 0-10v применяются повсеместно. Но такой метод управления не обеспечивает достаточной стабильности и не позволяет получать данные с сетевого контроллера
Но притом процесс программирования и настройки очень простой, поэтому сдача объекта с оборудованием по этому протоколу будет намного быстрее, так как требуется подключить всего 2 линии : внешний управляющий сигнал и общий общий обратный провод. сигнал подвержен внешним помехам, шумам и перебоям на линии заземления, особенно при передаче на большие расстояния;
Если для светильника требуется изменить настройки групп, то это будет невозможно сделать без перепрокладки кабеля, в цифровом аналоге это возможно сделать и без перепрокладки кабеля.

Продукты 0-10 v могут быть с управлением NFC
Products:

LC 20 W 200–650 mA 0-10 V NFC AUX lp EXC2 UNV 87500847

LC 35 W 350–900 mA 0-10 V NFC AUX lp EXC2 UNV 87500848

LC 50 W 350–1050 mA 0-10 V NFC AUX lp EXC2 UNV 87500849

LC 75 W 900–1800 mA 0-10 V NFC AUX lp EXC2 UNV 87500850

LC 85 W 1200–2200 mA 0-10 V NFC AUX lp EXC2 UNV 87500851

Светодиодный драйвер с регулируемым универсальным напряжением в категории excite (EXC2) с интерфейсом NFC и выходом AUX 24 В позволяет управлять модулями управления и датчиками без дополнительного источника питания. Все свойства драйвера можно увидеть в приложении для свободного программного обеспечения companionSUITE и их можно настроить с помощью NFC, так же как и выбираемые выходные токи, которые можно устанавливать с шагом 1 мА. Благодаря одно — и многопрограммному программированию можно запрограммировать как отдельные драйверы, так и целые группы, содержащие до 10 драйверов.

· Универсальное входное напряжение

· Мультипрограммирование до 10 драйверов в одной коробке

· Выбираемые выходные токи от 200 до 2200 мА

· Настраиваемые кривые затемнения: линейное, логарифмическое, мягкое линейное и квадратное затемнение (0-100 %)

· Эффективность до 89 %

· Регулируемый выходной ток с шагом 1 мА (NFC)

· Программируемое время затухания

· Защитные функции (перегрев, короткое замыкание, перегрузка, холостой ход, диапазон входного напряжения)

Типичные области применения

Для линейного/площадного освещения в офисах, в сфере образования, здравоохранения и общего освещения

Номинальный срок службы до 100 000 ч

Позже, в 2011 году, был утвержден стандарт IEC 60929 который регламентировал Стандарт 1-10V.

  1. сертификат: IEC 60929 ( Европа );
  2. предполагает пассивный регулятор, который выполняет роль потребителя (это резистивный элемент, потенциометр), а диммер является активным;
  3. при подключении, питающее напряжение подается к Диммеру и он создает питающее напряжение в системе управления;
  4. при значении сигнала 10V система выдает 100% яркости.При управляющем сигнале 1 В яркость свечения минимальная, но выключения света нет;
  5. для отключения необходимо ввести отдельно выключатель или кнопку, разрывающую цепь 220 В;
  6. универсальный, т.к.диммеры 1-10V могут работать с любыми регуляторами, как с 1-10V, так и с 0-10v

Продукты TRIDONIC с диммированием 1-10v

LC 75W 100-400mA 1-10V lp EXC 28001807

LC 75W 250-550mA 1-10V lp EXC 28001982

Диапазон затемнения 10 — 100%
КПД до 94%
Регулируемый выходной ток с шагом 1 мА (ready2mains, I-SELECT 2)
Диммирование через интерфейс 1 . 10 В
Защитные функции (перегрев, короткое замыкание, перегрузка, холостой ход, диапазон входного напряжения)
Intelligent Voltage Guard (контроль повышенного и пониженного напряжения)
Подходит для систем освещения аварийных выходов
Наилучшая экономия энергии за счет высокого КПД и диммирования через интерфейс 1 . 10 В
Гибкая конфигурация через ready2mains и I-SELECT 2
Надежность подтверждена сроком службы до 100000 часов и 5-летней гарантией.

Так же даже простой протокол можно подложить блютуз сеть, и создать сеть беспроводного управления освещения , создав mesh сеть.
Управление происходит через разрыв фазы.
Для протокола 0-10 так и для 1-10v остается проблема — невозможность работы со сложными системами в которых могут участвовать несколько сотен светильников. невозможность управления источником света из нескольких мест
Тем не менее, профиль работает с низким напряжением, он не чувствует нагрузки, поэтому он полностью безопасен.
Это очень простой протокол для подключения которого не требуется необходимость привлечения специалиста по программированию управляющего устройства, поэтому для несложных систем, в том числе и частных объектов, это самый идеальный. экономичный вариант диммировования светильниками.

sxemy-podnial.net

Предлагаю вашему вниманию схемы драйверов светодиодных светильников, которые мне пришлось недавно ремонтировать. Начну с простой (фото 1, справа) и схема на рисунке 1.

Светодиодные светильники. Фото 1. Драйвер светодиодного светильника на CL1502. Рис. 1.

В схеме этого драйвера установлена микросхема CL1502. Микросхем с подобными функциями выпущено уже много, и не только в корпусе с 8 ножками. На эту микросхему в интернете есть много технических данных, к примеру в [1]. Собран драйвер по «классической» схеме. Неисправность была в выгорании пары светодиодов. Первый раз просто закоротил их, так как находился вдали от «цивилизации». Тоже сделал и во второй раз. И когда сгорела третья пара, я понял, что жить этому светильнику осталось мало. Простым закорачиванием пар светодиодов, так просто не обойдёшься. Требовалось что-то по-кардинальные. Ранее я изучал схемотехнику и работу подобных микросхем, с целью укоротить светодиодную лампу, в корпусе трубчатой стеклянной люминисцентной 36 Ватт, с длины 120 сантиметров в 90, так как был в наличии такой светильник, установленный над рабочим столом. И всё удалось и работает. А здесь. Насколько я понял работу подобных светильников, с применением таких драйверов, то ничего плохого не должно происходить после закорачивания хотя бы всех светодиодов, кроме последней пары. Ведь всё в них решает датчик тока, в данной схеме это резисторы R3 и R4. Напряжение выделенное этими резисторами, попадая через выводы 7 и 8 микросхемы CL1502 к компаратору выключения силового ключа работают отлично. Но что-то всё же жжёт светодиоды. Но что? Моё предположение — их жжёт сам драйвер! Светодиоды применённые в этом светильнике, похожи на 2835SMDLED (0,5 Вт одного светодиода). И если это действительно они, то заявленная мощность светильника вполне оправдана. Но у меня, сильные подозрения, что в светильнике стоят 3528SMDLED, которые имеют параметры, чуть ли не на порядок ниже. Но понять мне это очень трудно, так как на SMD светодиодах нет обозначений. Что сделал я? Я убрал с платы резистор R4. При этом уменьшился ток через светодиоды и… светодиоды перестали сгорать. Что интересно, в строительном вагончике, в котором стояли три светильника одного типа, последовательно пришлось ремонтировать все три. И везде пришлось снять по одному резистору. И да, везде упал световой поток, хотя глазом это и трудно определить, но если сравнивать, то заметно.

В другом вагончике, было два светильника с внешними размерами 595х595 мм.. И они тоже «горели». В этих светильниках ячейки состояли из четырёх светодиодов в параллели и было таких 28 ячеек. Так как и там была подобная схема (поднять не удалось), то просто выпаял по одному резистору.

В итоге, можно сделать вывод, что ремонт можно выполнять, по подобной методике, то есть уменьшать ток через светодиоды, так как лучше, пусть светят темнее, чем совсем погаснут. Хотя конечно, правильнее поменять все светодиоды на 2835SMDLED, но это при их наличии.

Драйвер светодиодного светильника на B77CI. Рис. 2.

Схема второго драйвера, изображённого на рисунке 2, я «поднял» со светильника, который нашёл в металлоломе, с механическими поломками корпуса. На рисунке 3 схема четырёх плат светодиодов по 9 Вт каждая. Хотел снять светодиоды для запчастей. И даже, не сразу заметил невзрачную коробочку с драйвером. Схема оказалась почти «монстром».

Фонарь светодиодного светильника. Рис. 3. Внешний вид платы драйвера на B77CI. Фото 2.

Наличие двух микросхем, двух мощных полевых транзисторов, двух дросселей и двух электролитических конденсаторов 220 мк х 100 В включенных параллельно, указывало на то, что разработчики поработали на славу. Так же присутствует довольно хорошая схема фильтров (смотрите фото 2). Микросхема DX3360T — это, по всей видимости, стабилизатор напряжения, и возможно, с корректором мощности. Я в интернете нашёл только невзрачную картинку, без описания. А на микросхему B77CI не нашёл ни чего, и названия выводов на схеме ставил, по интуиции. В работе этот драйвер не видел. Но предполагаю хорошую работу. Но если, придётся уменьшать ток через светодиоды, то нужно или убрать с платы один-два резистора Rs4..Rs6, или менять на другие, расчётные.

И ещё. Совсем не понятно, как в подобных светильниках организован отвод тепла от светодиодов. Ведь они запаиваются на платки из фольгированного стеклотекстолита, шириной в 5 мм. и толщиной примерно в 1 мм.? Думаю, что почти ни как. Всё ширпотреб.

Высоковольтный выключатель со встроенным оптическим трансформатором тока

В качестве источников измерительного сигнала для создания систем релейной защиты, противоаварийной автоматики, систем автоматического управления выключателем, коммерческого учета и телеметрии применяются электромагнитные трансформаторы тока (ТТ). Они выпускаются или в маслонаполненном, или в элегазовом исполнении. Но в любом случае для напряжений уровня 330–500 кВ эти изделия представляют собой внушительную конструкцию весом в 500–800 кг и высотой до 7 метров. Для их монтажа и установки требуются бетонные основания и стальные конструкции, значительные площади на территории распределительного устройства (ОРУ). Применение элегаза или масла в качестве изолирующей среды вынуждает тратить значительные средства на техническое обслуживание ТТ в процессе их жизненного цикла. Используемый в конструкции этих ТТ принцип электромагнитного преобразования приводит к эффектам намагничивания железа трансформаторов, искажению формы и величины вторичного измерительного тока и как следствие — к ложной работе вторичных систем автоматики и управления.

Компания «Профотек» совместно с компанией «УЭТМ» договорились о создании комплексного решения на базе российских технологий — элегазового выключателя 500 кВ со встроенным оптическим трансформатором тока и автоматикой управления. В конструкции комплексных изделий на базе выключателя ВГТ-УЭТМ ® -500 будут использованы электронные оптические трансформаторы тока (ТТЭО) производства «Профотек».

Рис. 2. Компоновка полюса колонкового элегазового выключателя ВГТ-УЭТМ®-500 со встроенным волоконно-оптическим трансформатором тока от «Профотек»

Применение цифрового оптического ТТ исключает проявление эффектов магнитного насыщения. Оптический трансформатор обладает очень большим динамическим диапазоном рабочих токов и вследствие использования оптико-электронных систем преобразования тока выдает на выходе точный и неискаженный цифровой сигнал. Оптический ТТ не содержит масел и элегаза в своей конструкции и в связи с этим требует гораздо меньшего объема технического обслуживания. Кроме того, оптический трансформатор тока не поддерживает горения (он не содержит горючих материалов) и, в связи с этим обеспечивает повышенную надежность работы. Цифровой измерительный сигнал, вырабатываемый оптическим трансформатором, позволяет создавать системы измерений и защит с совершенно новыми качествами. Так, повышенное быстродействие цифровой системы измерений позволит очень точно определять моменты перехода тока через 0 и подавать команду на отключение выключателя в аварийных режимах именно в этот момент, а это поможет существенно увеличить ресурс работы высоковольтного выключателя.

Кроме того, в современных ОРУ энергетических объектов нередко имеют место «мертвые» зоны, обусловленные разнесением мест установки выключателей и ТТ. Короткие замыкания (КЗ) в таких зонах ликвидируются только действием устройства резервирования отказа выключателя (УРОВ). Однако длительность периода возмущения, в течение которого отрабатывает УРОВ, может привести к нарушению динамической устойчивости генерирующего оборудования. Одним из решений по ликвидации «мертвых» зон является установка высоковольтного выключателя со встроенным оптическим ТТ. Это позволит исключить «мертвые» зоны в существующей конфигурации ОРУ без существенных затрат на изменение компоновки распределительного устройства и строительство дополнительных сетевых элементов в схемах выдачи мощности крупных энергообъектов.

Разработка высоковольтного выключателя с интегрированным оптическим трансформатором позволит создать «цифровой выключатель», который логично вписывается в технологию цифровой подстанции.

Создание колонкового выключателя с интегрированным оптическим трансформатором тока позволит существенно снизить материальные затраты при новом строительстве, так как отпадает необходимость в монтаже значительного количества вспомогательных конструкций (бетонные основания и т. п.) и позволит сократить размеры площади на ОРУ, необходимой для монтажа высоковольтных элементов. Разработка высоковольтного выключателя с интегрированным оптическим трансформатором позволит создать «цифровой выключатель», который логично вписывается в технологию цифровой подстанции. С точки зрения эксплуатации предлагаемое решение представляется оптимальным, так как конструкция самого выключателя и органов управления им не изменяются, что позволяет рассчитывать на упрощенную процедуру подготовки эксплуатационного персонала к использованию комбинированного изделия и не вызовет сложностей при его монтаже и наладке. При этом, благодаря применению оптических технологий, у выключателя появляются дополнительные функциональные возможности и новые качественные характеристики, такие как наблюдаемость, безопасность, быстродействие и должная чувствительность систем защиты.

Рис. 3. Интеллектуальный узел управления выключателем для цифровой подстанции

Выбор в качестве базы для создания «цифрового выключателя» ВГТ-УЭТМ ® -500 обусловлен серьезным моральным устареванием воздушных выключателей серий ВНВ и ВВБ, которые в России являются наиболее распространенными коммутационными аппаратами на класс напряжения 500 кВ. Эти выключатели вводились в эксплуатацию с конца 70-х до начала 80-х годов прошлого века. При среднем сроке службы, не превышающем 25 лет, данное электрооборудование в основной массе практически выработало свой ресурс. Как следствие, остро стоит вопрос о замене данного оборудования на более современные аналоги. Установка же колонкового элегазового выключателя взамен устаревших воздушных на действующих подстанциях не требует проведения значительных подготовительных работ.

Следует дополнить, что на текущем этапе проектирования комплексного изделия прорабатывается возможность дооснащения ранее установленных выключателей ВГТ-УЭТМ ® -500 комплектами модернизации, включающими в себя сами оптические трансформаторы, элементы для их подсоединения к полюсу серийного выключателя и все сопутствующие электронные блоки. Таким образом, в недалеком будущем будет возможно не только создавать новые цифровые подстанции, но и проводить «оцифровку» старых с минимальными затратами.

Изделие планируется испытать и подготовить к установке для проведения опытной промышленной эксплуатации в 2019 году.

голоса
Рейтинг статьи
Читать еще:  Проходной переключатель отличие от выключателя
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector