Выключатель системы управления тягой
Элегазовые выключатели
Элегазовые выключатели ВГТ, ВГБ, ВГГ, ВГП, ВГК, ВБ
Элегазовые выключатели — это разновидность высоковольтных выключателей, которые представляют собой коммутационный аппарат, использующий элегаз (шестифтористую серу, SF6) в качестве среды гашения электрической дуги; предназначенный для оперативных включений и отключений отдельных цепей или электрического оборудования в энергосистеме, в нормальных или аварийных режимах, при ручном, дистанционном или автоматическом управлении.
Основные достоинства элегазового оборудования определяются уникальными физико-химическими свойствами элегаза. При правильной эксплуатации элегаз не стареет и не требует такого тщательного ухода за собой, как масло.
Привод выключателя обеспечивает управление выключателем — включение, удержание во включенном положении и отключение. Вал привода соединяют с валом выключателя системой рычагов и тяг. Привод выключателя должен обеспечивать необходимую надежность и быстроту работы, а при электрическом управлении — наименьшее потребление электроэнергии.
Выключатели серии ВГ
Выключатели элегазовые ВГ предназначены для коммутации электрических цепей при нормальных и аварийных режимах, а также работы в циклах АПВ в сетях трехфазного переменного тока частоты 50 Гц с номинальным напряжением 110 и 220 кВ.
Условное обозначение выключателя ВГ Х-ХII*-ХХ/ХХХХ У1:
ВГ — выключатель элегазовый;
Х — условное обозначение конструктивного исполнения (К, Б, Э, Т, П, Г);
Х — номинальное напряжение, кВ (110 или 220);
II* — категория по длине пути утечки по внешней изоляции в соответствии с ГОСТ 9920-89;
ХХ — номинальный ток отключения, кА (40; 50);
ХХХХ- номинальный ток, А (2500, 3150);
У1 — климатическое исполнение и категория размещения по ГОСТ 15150-69 и ГОСТ 15543.1-89.
Условное обозначение привода выключателя ППрК-1800С:
П — привод;
Пр — пружинный;
К — кулачковый;
1800 — работа статического включения, Дж;
С — специальный.
Условия эксплуатации выключателя ВГ:
- Высота установки над уровнем моря не более 1000 м.
- Температура окружающего воздуха от минус 45 до 40°С.
- Относительная влажность воздуха не более 80% при температуре 20°С. Верхнее значение 100% при температуре 25°С.
Возможные модификации
Выключатели ВГТ
- ВГТ-110 — Элегазовый выключатель ВГТ-110 колонковый. Состоит из трех полюсов (колонн), установленных на общей раме и механически связанных друг с другом. Все три полюса выключателя управляются одним пружинным приводом типа ППрК.
- ВГТ-110II-40/2500
- ВГТ-1А1-220
- ВГТ-220
- ВГТ-220II-40/2500
- ВГТ-35
Выключатели ВГП
- ВГП-110 II — 20/2500 УХЛ1 — выключатель элегазовый колонковый ВГП-110 II — 20/2500 УХЛ1 наружной установки.
- ВГП-110 II- 40/2500 У1
- ВГП-220 II- 40/2500 У1
- ВГП-220 II-20/2500 У1
Выключатели ВГГ
- ВГГ-15-50/6300 — выключатель генераторный элегазовый ВГГ-15-50/6300 предназначен для осуществления коммутационных операций в цепях генераторов.
- ВГГ-20-63/8000
- ВГГ-20-90/10000
- ВГГ-20-90/6300
- ВГГ-330
- ВГГ-750 — выключатели колонковые элегазовые ВГГ-750 предназначены для коммутации электрических цепей при нормальных и аварийных режимах, а также работы в циклах АПВ в сетях трехфазного переменного тока частоты 50 Гц с номинальным напряжением 750 кВ, комплектуются пружинным приводом.
Выключатели ВГК
- ВГК-220-31,5/3150 — Элегазовый выключатель ВГК-220 укомплектован пружинно-гидравлическим приводом ППГВ-4 А2Т-УХЛ1
- ВГК-500-40/3150 — Элегазовый выключатель ВГК-500 укомплектован гидравлическим приводом ПГВ-12АТ-УХЛ1
- ВГБ-35-12,5/1000 — высоковольтный выключатель элегазовый баковый наружной установки
- ВГБ-35-12,5/630
Выключатели ВБ
- ВБ-110 II- 40/2500 У1 — выключатель элегазовый баковый ВБ-110-40/2500 УХЛ1 и У1 с пружинным приводом типа ППрА-2000 и встроенными трансформаторами тока.
Выключатели ВГБУ
- ВГБУ-220-40/2000 У1 — высоковольтый выключатель элегазовый баковый ВГБУ-220-40/2000 У1 предназначен для эксплуатации в открытых и закрытых распределительных устройствах в сетях переменного тока частотой 50 Гц с номинальным напряжением 220 кВ.
Выключатели ВЭБ
- ВЭБ-110 — Элегазовый выключатель ВЭБ-110 баковый. Имеет пружинный привод типа ППрК-2000СМ и встроенные трансформаторы тока.
- ВЭБ-220
- ВЭБ-110II*40/2500 УХЛ1*
Выключатели ВЭКТ
- ВЭКТ-110-40/2000 — элегазовый высоковольтный выключатель, в качестве дугогасящей и изолирующей среды использована смесь элегаза и тетрафторметана (SF6+CF4)
- ВЭКТ-110-40/3150
Как купить Элегазовые выключатели?
У нас вы можете купить Элегазовые выключатели по выгодной цене с доставкой по России и СНГ.
Узнать стоимость или более подробную информацию, отправить заявку или опросный лист можно по телефону, тел./факсу и электронной почте:
Телефон в Санкт-Петербурге: +7 (812) 385-63-55 ( многоканальный )
Важно! Внешний вид, габаритные, установочные и присоединительные размеры оборудования могут отличаться от указанных на сайте. Поэтому согласовывайте их, пожалуйста, заранее перед заказом.
Трёхходовой смесительный клапан — управление, применение, особенности.
Трёхходовой клапан (кран) — устройство смешения или разделения потоков рабочей среды (жидкости или газа). В быту чаще всего он используется в системах вентиляции, отопления, ГВС и тёплых полов. С помощью трёхходового крана можно плавно менять расход воды через теплообменник, регулируя тем самым температуру в системе.
Проще говоря, трёхходовой кран применяют тогда, когда нужно перераспределять поток рабочей среды, а не просто открывать или закрывать, как в случае с обычным краном. Это позволяет поддерживать постоянную циркуляцию в системе, улучшить теплосъём и оптимизировать работу отопительных приборов.
Принцип работы трёхходового клапана
Трёхходовые клапаны бывают двух видов: смесительные и разделительные.
Как понятно из названия, первые смешивают два потока, а вторые, наоборот разделяют один поток на два. При этом они имеют схожий принцип работы: внутренний клапан перекрывает два отверстия в определённой пропорции. В этой же пропорции смешиваются или разделяются потоки.
Трёхходовой клапан с электроприводом
Для того чтобы управлять трёхходовым краном автоматически, на него устанавливают электропривод, который позволяет позволяет поворачивать кран на необходимый угол.
Сигналы управления формирует интеллектуальное устройство (контроллер или регулятор), примеры которых будут рассмотрены ниже.
Привод крана может управляться напряжением 220 В или 24 В.
По типу сигнала управления различают два вида приводов трёхходовых клапанов:
- привод с импульсным управлением
- привод с управлением аналоговым сигналом 0-10 В или 4-20 мА
Привод трёхходового клапана с импульсным управлением
Этот тип привода управляется с помощью электрических импульсов разной длительности. Электронная плата привода имеет два дискретных входа, один из которых отвечает за закрытие, а другой — за открытие.
При подаче напряжения на один из дискретных входов клапан начинает открываться или закрываться( в зависимости от того, на какой вход подано напряжение), и делает это до тех пор, пока управляющее напряжение не будет «снято» со входа. Подача напряжения на другой вход приведёт к началу вращения привода в противоположном направлении.
Таким образом, чем дольше подавать управляющее напряжение на вход, тем на больший угол привод успеет повернуть клапан. Подача на дискретные входы импульсов различной длительности позволяет открывать (или закрывать) клапан «по чуть-чуть». Полное время закрытия/открытия клапанов сильно различается и может составлять от нескольких секунд до нескольких минут.
Приводы с импульсным управлением чаще всего имеют датчик положения, для определения текущей степени открытия клапана. Сигнал с этого датчика может использоваться в контроллере для улучшения качества управления или визуализации положения клапана.
Привод трёхходового крана с аналоговым управлением
Электроника такого привода «принимает» на вход унифицированный аналоговый сигнал. Это либо токовый сигнал 4-20 мА, либо сигнал напряжения 0-10 В, либо может управляться любым из этих сигналов.
Принцип управления в данном случае достаточно прост: чем больше ток управляющего сигнала в диапазоне от 4 до 20 мА — тем больше открыт клапан. При сигнале тока 4 мА, он будет полностью закрыт, а при 20 мА — полностью открыт.
С управляющим сигналом по напряжению (0-10 В) всё аналогично.
В таких приводах датчик положения не так важен, поскольку по значению поданного управляющего напряжения можно однозначно определить его положение.
Контроллер управления трёхходовым клапаном
Для того чтобы управлять трёхходовым клапаном по температуре в системе, используют интеллектуальное устройство (контроллер или регулятор).
Для примера рассмотрим систему отопления. В качестве регулятора возьмём «ТРМ12» компании «ОВЕН».
Датчик температуры измеряет температуру в помещении и передаёт показания на регулятор, который управляет трёхходовым клапаном.
Если клапан будет полностью открыт, вся горячая вода от котла потечёт через теплообменник (показано красным цветом на схеме) и мощность нагрева будет максимальной. При полностью закрытом клапане вода будет циркулировать по малому кругу (показан синим цветом) через теплообменник, постепенно остужаясь. При понижении температуры в помещении регулятор будет приоткрывать трёхходовой вентиль, подмешивая горячую воду от котла в поток теплоносителя, циркулирующий через радиатор.
В результате регулятор «подберёт» такое положение вентиля, при котором количество подмешиваемой горячей воды обеспечит заданную температуру в помещении.
ТРМ12 работает по принципу ПИД-регулятора (о нём можно почитать тут ). Пользователь задаёт необходимое значение температуры в помещении с управляющей панели прибора. По текущему значению температуры, полученному от датчика, и заданию пользователя контроллер вычисляет, на сколько нужно открыть трёхходовой кран, и посылает управляющие импульсы необходимой длительности.
Для управления приводом клапана с аналоговым входным сигналом ТРМ12 не подходит. Вместо него можно выбрать, например ТРМ10. Вот его функциональная схема:
Как видите, этот регулятор имеет универсальный аналоговый выход (о-10 В или 4-20 мА).
Описание и принцип работы противобуксовочной системы TCS
Противобуксовочная система – это совокупность механизмов и электронных компонентов автомобиля, которые предназначены для предотвращения проскальзывания ведущих колес. Система TCS (Traction Control System, система контроля тяги) – торговое название антипробуксовочной системы, которая устанавливается на машины марки «Honda». Аналогичные системы устанавливаются на автомобили других брендов, однако они имеют другие торговые названия: антипробуксовочная система TRC (Toyota), антипробуксовочная система ASR (Audi, Mercedes, Volkswagen), система ETC (Range Rover) и другие.
Активированная TCS не дает ведущим колесам автомобиля буксовать при начале движения, резком ускорении, поворотах, плохих дорожных условиях и быстром перестроении. Рассмотрим принцип действия TCS, ее составляющие и общее устройство, а также плюсы и минусы ее эксплуатации.
- Принцип работы TCS
- Устройство и основные компоненты
- Преимущества и недостатки
- Применение
Принцип работы TCS
Общий принцип работы Traction Control System довольно прост: датчики, входящие в состав системы, регистрируют положение колес, их угловую скорость и степень проскальзывания. Как только одно из колес начинает пробуксовывать, TCS моментально устраняет потерю сцепления с дорожным покрытием.
Противопробуксовочная система справляется с проскальзыванием следующими способами:
- Подтормаживание буксующих колес. Тормозная система задействуется при невысокой скорости – до 80 км/ч.
- Уменьшение крутящего момента двигателя автомобиля. При скорости более 80 км/ч задействуется система управления двигателем, которая меняет величину крутящего момента.
- Комбинирование первых двух способов.
Отметим, что Traction Control System устанавливается на автомобили с антиблокировочной системой (ABS – Antilock Brake System). Обе системы используют в своей работе показания одних и тех же датчиков, обе системы преследуют цель обеспечить колесам максимальное сцепление с опорной поверхностью. Главное отличие – ABS ограничивает затормаживание колес, а TCS наоборот притормаживает быстро вращающееся колесо.
Устройство и основные компоненты
Traction Control System основывается на элементах антиблокировочной системы. Система предотвращения пробуксовки колес использует электронную блокировку дифференциала, а также систему управления крутящим моментом двигателя. Основные компоненты, необходимые для реализации функций антипробуксовочной системы TCS:
- Насос подачи тормозной жидкости. Этот компонент создает давление в тормозной системе автомобиля.
- Переключающий электромагнитный клапан и электромагнитный клапан высокого давления. Каждое ведущее колесо оснащено такими клапанами. Данные компоненты управляют торможением в пределах заданного контура. Оба клапана являются частью гидравлического блока ABS.
- Блок управления ABS/TCS. Осуществляет управление противопробуксовочной системой с помощью встроенного ПО.
- Блок управления двигателем. Взаимодействует с блоком управления ABS/TCS. Противопробуксовочная система подключает его к работе, если скорость машины более 80 км/ч. Система управления двигателем получает данные от датчиков и посылает управляющие сигналы исполнительным механизмам.
- Датчики частоты вращения колес. Каждое колесо машины оснащено данным датчиком. Сенсоры регистрируют скорость вращения, а после передают сигналы в блок управления ABS/TCS.
Кнопка включения/отключения TCS
Отметим, что водитель может отключить антипробуксовочную систему. Обычно на приборной панели присутствует кнопка «TCS», которая включает/отключает систему. Отключение TCS сопровождается подсвечиванием индикатора «TCS Off» на приборной панели. Если такая кнопка отсутствует, то противопробуксовочную систему можно отключить, вытащив соответствующий предохранитель. Однако делать этого не рекомендуется.
Преимущества и недостатки
Основные преимущества Traction Control System:
- уверенный старт автомобиля с места на любом дорожном покрытии;
- устойчивость автомобиля при прохождении поворотов;
- безопасность движения в различных погодных условиях (наледь, мокрое полотно, снег);
- снижение износа шин.
Отметим, что в некоторых режимах движения противопробуксовочная система снижает производительность двигателя, а также не дает полностью контролировать поведение автомобиля на дороге.
Применение
Противопробуксовочная система TCS устанавливается на автомобили японской марки «Honda». На машины других автопроизводителей ставятся аналогичные системы, а отличие торговых названий объясняется тем, что каждый автоконцерн независимо от других разрабатывал антипробуксовочную систему под собственные нужды.
Широкое распространение данной системы позволило существенно повысить уровень безопасности автомобиля при движении за счет непрерывного контроля сцепления с дорожной поверхностью и улучшения управляемости при наборе скорости.
Автоматическое управление освещением – это просто
Реле для автоматического управления освещением, в последнее время приобретают все большую популярность. Ведь они позволяют не только существенно снизить затраты на освещение, но и сделать ваш дом более удобным для проживания. Что уж тут говорить о централизованных системах управления освещением, которые позволят вам вообще не подходить к выключателям.
Но зачастую установка таких систем достаточно дорогостоящая, и по карману далеко не каждому. В то же время, при наличии минимальных познаний в электротехнике, вы вполне можете создать централизованную систему управления, которая по своему функционалу мало в чем будет уступать своим более прогрессивным собратьям. А вот ее стоимость будет на порядок ниже.
- Устройства применяемые для автоматизации управления освещением
- Схемы автоматического управления освещением
- Схемы подключения с одним датчиком
- Схемы подключения с двумя датчиками
- Вывод
Устройства применяемые для автоматизации управления освещением
Дабы разобраться с вопросом автоматического управления, давайте сначала рассмотрим, а чем отличается централизованная система управления от установки обычных датчиков. И какие, собственно говоря, датчики для этого могут применяться?
Для ответа на этот вопрос давайте возьмем шкаф управления наружным освещением с централизованной системой, и посмотрим, что к нему подключено. Вы удивитесь, но это обычные датчики освещенности, движения, присутствия, таймеры и концевые выключатели открывания дверей.
Сам процесс управления осуществляется только за счет этих датчиков. А централизованная система лишь обеспечивает их координацию, изменение режимов работы и удобный интерфейс пользователя для настройки и управления.
- То есть, мы вполне можем своими руками создать подобную систему управления, которая только что и будет не столь удобна в эксплуатации.
- Но столь ли часто нам необходимо изменять настройки? Может быть раз-два в год – да и то, только на отдельных реле.
- Это вполне можно сделать и вручную, а не через WEB-интерфейс. Зато стоимость такой системы будет в разы ниже.
- Что нам для этого необходимо? В первую очередь сами датчики. Поэтому давайте остановимся на них подробнее.
По сути это обычные кнопки, которые монтируются в дверь и фиксируют ее положение.
Они могут быть выполнены по разнообразным технологиям, из-за чего цена на устройство может достаточно сильно отличаться.
Схемы автоматического управления освещением
Подключение приведенных выше датчиков по схеме «и» или «или», позволяет полностью автоматизировать процесс управления освещением:
- Так называемая логика «и» — это когда включение освещения наступает при срабатывании сразу двух датчиков.
- Например, при снижении освещенности срабатывает датчик освещенности, и падает питание к датчику движения, при срабатывании которого и включается свет. Таким образом, срабатывание одного из этих датчиков не приведет к включению света.
- Логика «или» — это когда свет включится по фактору срабатывания одного из нескольких датчиков. Например: свет включится или по факту снижения освещенности, или по фактору наступления времени срабатывания на таймере.
Схемы подключения с одним датчиком
Чтобы разобраться с этим вопросом более детально, давайте рассмотрим разнообразные схемы подключения датчиков. Начнем с наиболее простых схем с одним датчиком.
В качестве примера возьмем схему подключения датчика освещенности, который при снижении уровня естественной освещенности будет давать импульс на включение искусственного освещения. Принцип подключения других датчиков аналогичен.
- Для этого нам потребуется непосредственно сам датчик освещенности. Он может быть двух типов. В первом случае — это датчик с коммутационным механизмом внутри. Такое устройство способно управлять освещением с токами до 6, 10 или 16А. Более высокие токи приведут к перегоранию контактной части реле.
- Второй тип реле — это автомат управления освещением с выносным датчиком. Автомат и датчик соединяются при помощи провода. В этом случае, датчик подает лишь управляющий импульс на автомат, а коммутация цепи происходит уже непосредственно автоматом. Такие устройства способны включать и отключать освещение с номинальными токами до 32А, а иногда и выше.
- В нашем примере мы рассмотрим подключение датчика освещенности первого типа, как более распространенного. Для его работы, нам потребуется подключить к нему фазный и нулевой провод (см. Как прозвонить провода: рассмотрим варианты).
- Для этого фазный провод подключаем от выключателя сети освещения, которую мы планируем автоматизировать. Причем, подключаем его на приходящий от распределительной коробки или от группового автомата контакт. Нулевой провод подключаем непосредственно в распределительной коробке — или шкафу управления освещением, как на видео.
- Теперь датчик у нас работоспособен, но пока еще нечего не коммутирует. Для этого нам необходимо к третьему выводу датчика подключить еще один провод. Он так же будет фазным, и подключается либо на уходящий контакт выключателя, либо непосредственно к ближайшему светильнику. Нулевой провод для светильника берется отдельно от распределительного щита или коробки.
Обратите внимание! Наша инструкция не даром делает такой акцент на подключение от выключателя. Дело в том, что согласно нормам ПУЭ, любые сети освещения с автоматическим управлением должны быть оборудованы системой ручного управления, которая шунтирует средства автоматизации. Проще говоря, должен стоять выключатель, который позволит включить свет помимо датчика.
Схемы подключения с двумя датчиками
Теперь давайте рассмотрим вопрос подключения сразу нескольких датчиков. При этом у нас будет два варианта: первый подключение по логике «и», а второй по логике «или».
- В качестве примера, давайте рассмотрим вариант, когда нам необходимо, чтобы освещение включалось, когда будет достаточно темно, и когда в определенной зоне есть человек. Для этого нам потребуется датчик освещенности и датчик движения. Вместо датчика движения может быть датчик присутствия.
- Теперь давайте разберем схему подключения – она называется последовательной. Прежде всего, как в варианте с подключением одного датчика, монтируем датчик освещенности. Только провод, который у нас шел к светильникам, подключаем в качестве приходящего фазного к датчику движения. А уже уходящий фазный провод от датчика движения подключаем к светильникам. При этом нулевой провод для датчика движения, мы подключаем в шкаф управления освещением наружным или распределительную коробку. Можно на один контакт с нулевым проводом датчика освещенности.
- При такой схеме, после того как снизится уровень естественного освещения, сработает датчик освещенности. Он подаст фазу на датчик движения, и тот включится в работу. После того, как в зону действия датчика попадет человек, он сработает и включит освещение.
- Теперь давайте рассмотрим вариант, когда у нас имеется длинная дорожка. Нам необходимо, чтобы свет зажегся тогда, когда с одной или со второй стороны дорожки появится человек. Зона действия одного датчика движения недостаточна для охвата всей дорожки. Поэтому нам потребуется два, или даже три датчика.
- Схема такого подключения достаточно проста. Все датчики должны быть включены параллельно. Для этого из одной точки берем нулевой провод, и подключаем его ко всем датчикам. Так же поступаем и с фазным питающим проводом. А вот уходящие от датчиков фазные провода, соединяем между собой и подключаем к нашим светильникам.
Обратите внимание! Если у нас имеется ящик управления освещением 380В, из которого мы подключаем датчики, то крайне важно чтобы все они были запитаны от одного и того же фазного провода. В противном случае, это приведет к короткому замыканию. Поэтому, для исключения ошибок, подключения лучше выполнять в одной точке.
При таком способе подключения, при срабатывании хотя бы одного из датчиков, свет включится вдоль всей дорожки. Комбинируя приведенные выше варианты, можно достичь высочайшей степени автоматизации.
Но для сложных схем, становится достаточно накладно монтировать силовые провода от датчика к датчику. Поэтому в таких случаях, все силовые переключения выполняются в силовом шкафу. А к датчикам подводится только питание, и от них исходят управляющие сигналы.
Вывод
Ящик управления освещением с фотореле — это уже давно не предел автоматизации. Современные технологии позволяют использовать сразу несколько параметров для включения освещения. И далеко не всегда для этого необходима покупка дорогостоящего оборудования.
Вполне возможно создать качественные системы управления и самостоятельно. Для этого достаточно иметь минимальные познания в электротехнике, и правильно продумать условия включения и отключения света.